
Antescofo
A not-so-short introduction to version 0.5x

IRCAM UMR STMS 9912 – CNRS – UPMC – INRIA/MuTant

November 27, 2013

Document prepared by Jean-Louis Giavitto
and MuTant Team Members.

Antescofo is a coupling of a real-time listening machine with a reactive synchronous lan-
guage. The language is used for authoring of music pieces involving live musicians and
computer processes, and the real-time system assures its correct performance and synchro-
nization despite listening or performance errors. In version 0.5x, the listening machine has
been improved and the language accepted by the reactive module of Antescofo has greatly
evolved.

This document is a reference for the new architecture starting from version 0:5. The
presentation is mainly syntax driven and it supposes that you are familiar with Antescofo.
The objective is to give enough syntax to upgrade the old Antescofo score in the few place
where it is needed and to enable the reader to start experimenting with the new features.
Please refer to the examples and tutorial to have sensible illustrations of the language.

Additional information on Antescofo can be found:

� on the project home page
http://repmus.ircam.fr/antescofo

� on the IrcamForum User Group
http://forumnet.ircam.fr/user-groups/antescofo/

where you can find a tutorials to download with bundles for MAX and PureData

� on the IrcamForge pages of the project
http://forge.ircam.fr/p/antescofo/

� on the web site of the MuTanT project
http://repmus.ircam.fr/mutant

where you can find the scientific and technical publications on Antescofo.

http://repmus.ircam.fr/antescofo
http://forumnet.ircam.fr/user-groups/antescofo/
http://forge.ircam.fr/p/antescofo/
http://repmus.ircam.fr/mutant

Table of Contents

How to use this document 3

Brief history of Antescofo 3

1 Understanding Antescofo scores 4

1.1 Structure of an Antescofo Score . . 4

1.2 Elements of an Antescofo Score . . . 5

1.3 Identifiers 7

1.4 Comments and Indentation 8

2 Events 10

2.1 Event Specification 10

2.2 Event Parameters 10

2.3 Events as Containers 11

2.4 Event Attributes 12

3 Antescofo Model of Time 13

3.1 Logical Instant 13

3.2 Time Frame 14

4 Actions in Brief 16

4.1 Delays 16

4.2 Label 17

5 Expressions 19

5.1 Values 19

5.2 Variables 25

5.3 Operators and Predefined Functions 29

5.4 Auto-Delimited Expressions in Actions 30

6 Atomic Actions 31

6.1 Assignments 31

6.2 Aborting and Cancelling an Action . 32

6.3 Max Messages 33

6.4 OSC Messages 34

6.5 I/O in a File 36

6.6 Internal Commands 36

6.7 Assertion assert 38

7 Compound Actions 39

7.1 Group 39

7.2 Conditional Actions: If 40

7.3 Sequential iterations: Loop 41

7.4 Parallel Iterations: ParFor 42

7.5 Sampling parameters: Curve 42

7.6 Reacting to logical events: Whenever 45

8 Synchronization and Error Handling
Strategies 48

8.1 Synchronization Strategies 48

8.2 Missed Event Errors Strategies . . . 50

9 Process 52

9.1 Macro vs. Processus 52

9.2 Recursive Process 53

9.3 Process as Values 53

10 Macros 55

10.1 Macro Definitions 55

10.2 Expansion Sequence 55

10.3 Generating New Names 56

11 Antescofo Workflow 58

11.1 Editing the Score 58

11.2 Tuning the Antescofo Listening Ma-
chine 58

11.3 Debuging an Antescofo Score 58

11.4 Dealing with Errors 58

11.5 Interacting with MAX 59

11.6 Interacting with PureData 60

11.7 Antescofo Standalone Offline 60

11.8 Old Syntax 62

12 Stay Tuned 63

A Changes in 0.51 65

B Detailed Table of Contents 66

How to use this document

This document is to be used as a reference guide to Antescofo language for artists, composers,
musicians as well as computer scientists. It describes the new architecture and new language
of Antescofo starting version 0:5 and above. The presentation is mainly syntax driven and
it supposes that you are familiar with Antescofo. Users willing to practice the language are
strongly invited to download Antescofo and use the additional Max tutorials (with example
programs) that comes with it for a sensible illustrations of the language. Available resources
in addition to this document are:

� on the project home page
http://repmus.ircam.fr/antescofo

� on the IrcamForum User Group
http://forumnet.ircam.fr/user-groups/antescofo/

where you can find a tutorials to download with bundles for MAX and PureData

� on the IrcamForge pages of the project
http://forge.ircam.fr/p/antescofo/

� on the web site of the MuTanT project
http://repmus.ircam.fr/mutant

where you can find the scientific and technical publications on Antescofo.

Brief history of Antescofo

Antescofo project started in 2007 as a joint project between a researcher (Arshia Cont) and a
composer (Marco Stroppa) with the aim of composing an interactive piece for saxophone and
live computer programs where the system acts as a Cyber Physical Music System. It became
rapidly a system coupling a simple action language and a machine listening system. The
language was further used by other composers such as Jonathan Harvey, Philippe Manoury,
Emmanuel Nunes and the system was featured in world-class music concerts with ensembles
such as Los Angeles Philharmonics, NewYork Philharmonics, Berlin Philharmonics, BBC
Orchestra and more.

In 2011, two computer scientists (Jean-Louis Giavitto from CNRS and Florent Jacquemard
from Inria) joined the team and serious development on the language started with participa-
tion of José Echeveste (currently a PhD candidate) and the new team MuTant was baptized
early 2012 as a joint venture between Ircam, CNRS, Inria and UPMC in Paris.

Antescofo has gone through an incremental development in-line with user requests. The
current language is highly dynamic and addresses requests from more than 40 serious artists
using the system for their system. Besides its incremental development with users and artists,
the language is highly inspired by Synchronous Reactive languages such as ESTEREL and
Cyber-Physical Systems.

3

http://repmus.ircam.fr/antescofo
http://forumnet.ircam.fr/user-groups/antescofo/
http://forge.ircam.fr/p/antescofo/
http://repmus.ircam.fr/mutant

1 Understanding Antescofo scores

1.1 Structure of an Antescofo Score

An Antescofo score is a text file, accompanied by its dedicated GUI AscoGraph, that is used
for real-time score following (detecting the position and tempo of live musicians in a give
score) and triggering electronics as written by the artists. An Antescofo score thus has two
main elements:

EVENTS are elements to be recognized by the score follower or machine listener, describing
the dynamics of the outside environment. They consist of NOTE, CHORD, TRILL and other
elements discussed in details in section 2.

ACTIONS are elements to be undertaken once corresponding event(s) or conditions are
recognized.

Actions in Antescofo extend the good-old qlist object elements in MAX and PD with
additional Models of Time (chapter 3), expression (chapter 5), Compound Actions (chap-
ter 7), Synchronization Strategies, Processes and more covered in separate chapters of this
document.

Figure 1 shows a sample score of Antescofo corresponding to first two measures of Tensio
by composer Philippe Manoury composed in 2010 for string quartet and live electronics as
seen in AscoGraph. The graphical representation on the left is a visual interpretation of the
Antescofo text score on the right.

Figure 1: The beginning of Tensio (2010) by Philippe Manoury for String Quartet and Live
electronics in AscoGraph

In Figure 1, the score for human musician contains four TRILLs (not all visible in text)
with a mixture of discrete and continuous compound actions as written by the composer.
Particularly, the TRILL labeled as IA...EVT-2 has a continuous action associated as its action
generated by a pre-defined macro cresc_curve (here, controlling the volume of a sound
synthesis program) where as prior to that a compound group named cloches is supposed to

4

synchronize atomic actions (seen in text and collapsed group box in the visual screen) with
the musician.

In this document, the Antescofo code fragments are colorized. The color code is as follows:
keywords related to file inclusion, function, process and macro definitions are in purple,
event related keywords are in red, keywords related to actions are in blue, comments are
in gray, strings are in green.

A textual Antescofo score, or program, is written in a file. It can be partitioned into
several files, using the @insert feature:

@insert macro.asco.txt
@insert "file␣name␣with␣white␣space␣must␣be␣quoted"

The @insert keyword can be capitalized: @INSERT, as any other keyword beginning with a
@ sign. An included file may includes (other) files. Macros can be defined to reuse program
fragments, see section 10 (see also functions page 6 and processes section 9).

1.2 Elements of an Antescofo Score

The language developed in Antescofo can be seen as a domain specific synchronous and
timed reactive language in which the accompaniment actions of a mixed score are specified
together with the instrumental part to follow.

As a consequence, an Antescofo program is a sequence of statements, events and actions.
Events are recognized by the listening machine. They are described in section 2. Actions,
outlined in in sections 4 and 6, are computations triggered by the occurence of an event or
of another action. The model of time of Antescofo is described in section 3 and the syn-
chronization between events and actions is described in section 8. Actions are parameterized
by expressions evaluated during the run of the program; they are described in section 5.
Statements parameterize the behavior of the listening machine, of the reactive machine and
the interactions between Antescofo and its environment.

Statements include:

� bpm specification: bpm 60 or bpm 50 @modulate (the pulsation can be given as an integer
or a float);

� transpose t transposes the specification of the pitches in the following events by t (in
midicents ; it can also be written @transpose);

� computation of the tempo: tempo on and tempo off (can also be written @tempo);

� external variable binding: bind $mouse_position;

� variance specification: variance 3.7;

� additional connection with Max/MSP: @inlet x;

� function definition;

� process definition;

5

� macro definition.

Statement cannot appears within an action. They must be at the top level in the file.
However, most of these statements correspond also to an internal action, see section 6.6.
Macros, processus and functions can be used only after their definition in the score. We
suggest to put them at the beginning of the file or to put them in a separate file that will be
included at the beginning of the score.

Function Definition. Functions are applied to values to return a value. There is three
kind of functions in Antescofo:

� predefined functions,

� user-defined intentional functions (specified by an expression),

� user-defined extensional functions (specified by data).

Functions in Antescofo are first class values. They are two main operations on this kind of
values: they can be applied to arguments (function call) and they can be passed as argu-
ment to other functions or process (see next paragraph). A function application can appear
everywhere an expression is expected.

Predefined functions are referred through a predefined @-name (case-sensitive). They in-
clude logarithmic, exponential and trigonometric functions, simple string manipulations and
so on. See section 5 where they are listed in the subsection related to the type of their
principal argument.

A user-defined intentional function definition takes the form

@fun_def @factorial($x) { $x < 1 ? 1 : $x * @factorial($x) }

(indentation and carriage-return do not matters). The name of a function is an @-identifier
as the names of predefined functions. The body of the function is an expression between
braces. The parameters are $-identifiers. Such functions can be recursive. See section 5.1.8
for additional information.

A user-defined extensional function is a dictionary defined by giving a list of pairs (key,
value), see section 5.1.9. When bot key and value are numeric, they corresponding function
can be interpolated between the breakpoints, see section 5.1.10).

Process Definition. Process are for actions what functions are for values. A process
definition takes the form

@proc_def :: Filter($x)
{

filter on
$x filter off
(2 * $x) :: Filter($x)

}

The name of a process is an ::-identifiers. The parameters are $-identifiers. Process can
be recursive and the name of a process can be used in expressions (e.g., as the argument of

6

another process). The example shows a recursive process that turn on and off a filter filter
until Antescofo stops.

Processes in Antescofo are first class values. The values of this type, proc, represent a
process definition. They are two main operations on this kind of values: they can be applied
to arguments (process instantiation) and they can be passed as argument to other functions
call or processes instantiations.

A process application is an action. However, it is also an expression that can be used for
instance in the right hand side of an assignment. The returned value is an exec. This kind of
value represents the running process and should not be confused with proc. They are used
for instance to kill a specific running process. See section 9 for additional information on
processes.

Process are a new feature in Antescofo and their use is promoted over macros.

Macro Definition. A macro is a fragment of code which has been given a name. Whenever
the name is used, it is replaced by the contents of the macro. Functions and processes are
usually more convenient than macros. For example, macro-expansion is a purely textual
device and occurs before any execution by the system. So, the code fragment corresponding
to a macro is not restricted to be an expression (as for functions) or an action (as for process).
However, there some constraints apply, e.g. macros cannot be recursive. See section 10 for
additional information.

Function, Process and Macro Application. The application of a function, a process or
a macro is denoted by the juxtaposition of the name of the function, process or macro with
the arguments between parenthesis. In case of multiple arguments, they are separated by a
comma.

1.3 Identifiers

The four different kinds of identifiers that exist in the language have been mentionned above:
simple identifier, @-identifiers, $-identifiers and ::-identifiers.

Accentuated characters can be used only in simple identifier (labels and MAX name). For
the other identifiers, stick to ASCII characters (up to 128).

1.3.1 Simple Identifiers

Simple identifiers, also called symbols, like id, id_1, id-1 are simple alphabetic characters
followed by alphabetic, numeric and special characters. They can start with a digit if the
digit is followed by at least two simple alphabetic characters. They cannot start by @, $ or :: .
The special characters include the four arithmetic operators + - * / and latin accentuated
characters but the score file must be coded in UTF-8.

Simple identifiers are used for labels, external name (e.g., Max, PD or file names) and
some keywords. The current list of simple identifier that are reserved for keywords is:

abort action assert bind bpm chord closefile curve do else event

7

expr false gfwd group hook if imap in jump kill let lfwd loop
loose map ms multi napro_trace note of off on openoutfile oscoff
oscon oscrecv oscsend parfor port s symb tab transpose trill true
until variance when whenever while

These keyword are case unsensitive, that is

note NOTE Note NoTe notE

all denote the same keyword. But the other simple identifiers (e.g., labels and external
names) are case sensitive.

1.3.2 @-identifiers

@-identifiers like @id, @id_1 are simple identifier prefixed by an at sign (@). Only ! ? . and _
are allowed as special characters.

@-identifier are used to name function and macros. In this case, they are case sensitive.

They are also some reserved @-identifiers used for the definition of functions and macros:

@fun_def @insert @lid @macro_def @proc_def @uid

They are also used for the various attributes of an action, namely:

@action @coef @date @global @grain @guard @hook @immediate
@jump @label @label @local @map_history @map_history_date
@map_history_rdate @modulate @name @norec @rdate @tempo @tight
@transpose @type

These attributes are case unsensitive, that is @tight, @TiGhT and @TIGHT are the same key-
word. For compatibility reason, there is an overlap between simple identifiers and the @-
identifiers (without the @).

1.3.3 $-identifiers

$-identifiers like $id, $id_1 are simple identifier prefixed with a dollar sign. However, only
! ? . and _ are allowed as special characters. $-identifier are used to give a name to variables
and function and macro parameters.

1.3.4 ::-identifiers

::-identifiers like ::P or ::q1 are simple identifier prefixed with two semi-columns. ::-
identifiers are used to give a name to processus (see section 9).

1.4 Comments and Indentation

Bloc comments are in the C-style and cannot be nested:

/* comment split
on several lines

*/

8

Line-comment are also in the C-style and also in the Lisp style:

// comment until the end of the line
; comment until the end of the line

Tabulations are handled like white spaces. Columns are not meaningful so you can indent
Antescofo program as you wish. However some constructs must end on the same line as
their “head identifier”: event specification, internal commands and external actions (like
Max message or OSC commands). For example, the following fragment raises a parse error:

NOTE
C4 0.5
1.0s print

"message␣to␣print"

(because the pitch and the duration of the note does not appear on the same line as the
keyword NOTE and because the argument of print is not on the same line). But this one is
correct:

Note C4 0.5 "some␣label␣used␣to␣document␣the␣score"
1.0s
print "this␣is␣a␣Max␣message␣(to␣the␣print␣object)"
print "printed␣after␣1␣seconds␣after␣the␣event␣Note␣C4..."

Note that the first print is indented after the specification of its delay (1.0s) but ends on
the same line as its “head identifier”, achieving one of the customary indentation used for
cue-lists.

9

2 Events

An event in Antescofo terminology corresponds to a sequence defining the dynamics of
the environment (in this case, a musician interpreting a piece of written music). They are
used by the listening machine to detect position and tempo of the musician (along other
inferred parameters) which are by themselves used by the reactive and scheduling machine
of Antescofo to produce synchronized accompaniments.

The listening machine specifically is in charge of real-time automatic alignment of an audio
stream played by one or more musicians, into a symbolic musical score described by Events.
The Antescofo listening machine is polyphonic1 and constantly decodes the tempo of the live
performer. This is achieved by explicit time models inspired by cognitive models of musical
synchrony in the brain2 which provide both the tempo of the musician in real-time and also
the anticipated position of future events (used for real-time scheduling).

2.1 Event Specification

Events are detected by the listening machine in the audio stream. The specification of an
event starts by a keyword defining the kind of event expected and some additional parameters:
NOTE pitch ...
CHORD (pitch_list) ...
TRILL (trill_list) ...
MULTI (multi_list) ...
MULTI (multi -> multi) ...

followed by the mandatory specification of a duration and optionally by some attributes.
They must be followed by a carriage return (in other word, an event specification is the last
thing on a line). There is an additional kind of event
EVENT ...

also followed by a mandatory duration, which correspond to waiting a click on the “next
event” button on the graphical interface.

The duration of an event is specified by a float, an integer or the ratio of two integers
like 4/3.

2.2 Event Parameters

The parameters of an event are as follows:

pitch is given by a number representing the pitch in midi or midicent, or a note name.
A negative pitch means that its corresponding note is tie with the same note of the
previous event. For instance

1 Readers curious on the algorithmic details of the listening machine can refer to : A. Cont. A coupled
duration-focused architecture for realtime music to score alignment. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 32(6):974–987, 2010.

2 E. Large and M. Jones. The dynamics of attending: How people track time-varying events. Psychological
review, 106(1):119, 1999.

10

pitch D4 3/2

represents the occurence of a D with a duration of 1.5 beat.

pitch_list is a sequence of pitch es:

D4b 1200 112 D5#

is a list of 4 notes.

trill_list is a sequence of: 1) pitch es and 2) sequences of pitch s (between parenthesis):

D4b (E3 A3) D5

multi_list is a sequence of multi and a multi is a pitch or a pitch_list or a pitch_list
followed by a quote:

(E3 A3)’

2.3 Events as Containers

Each event keyword in Antescofo in the above listing can be seen as containers with specific
behavior and given nominal durations. A NOTE is a container of one pitch. A chord contains
a vector of pitches. Figure 2 shows an example including simple notes and chords written in
Antescofo:

BPM 60
NOTE C4 1.0
CHORD (D4 F4) 1.0
NOTE 0 1.0 ; a silence
NOTE G4 0.0 ; a grace note with duration zero
NOTE F4 2.0

Figure 2: Simple score with notes and chords.

The two additional keywords Trill and Multi are also containers with specific extended
behaviors:

Trill Similar to trills in classical music, a Trill is a container of events either as atomic pitches
or chords, where the internal elements can happen in any specific order. Additionally,
internal events in a Trill are not obliged to happen in the environment. This way,
Trill can be additionally used to notate improvisation boxes where musicians are free
to choose elements. A Trill is considered as a global event with a nominal relative
duration. Figure 3 shows basic examples for Trill.

Multi Similar to Trill, a Multi is a compound event (that can contain notes, chords or event
trills) but where the order of actions are to be respected and decoded accordingly in
the listening machine. They can model continuous events such as glissando. Figure 4
shows an example of glissandi between chords written by Multi.

11

!!" # !$ %
&$!!

Music engraving by LilyPond 2.12.3—www.lilypond.org

TRILL (A4 A#4) 1.0
NOTE 0 1.0 ; a silence
TRILL ((C5 E5) (G5 B5)) 1.0

Figure 3: TRILL example on notes and chords

MULTI ((F4 C5) -> (D4 A4)) 4.0

Figure 4: MULTI example on chords

2.4 Event Attributes

They are three kinds of event attributes and they are all optional:

� The keyword hook (or @hook) specifies that this event cannot be missed (the listening
machine need to wait the occurrence of this event and cannot presume that it can be
missed).

� A simple identifier or a string or an integer acts as a label for this event. They can
be several such labels. If the label is a simple identifier, its $-form can be used in a
expression elsewhere in the score to denote the time in beat of the onset of the event.

� The keyword jump (or @jump) is followed by a comma separated list of simple identifiers
referring to the label of an event in the score. This attribute specifies that this event
can be followed by several continuations: the next event in the score, as well as the
events listed by the @jump.

These attribute can be given in any order. For instance:

Note D4 1 here @jump l1, l2

defines an event labeled by here which is potentially followed by the next event (in the file)
or the events labeled by l1 and l2 in the score. Note that

Note D4 1 @jump l1, l2 here

is the same specification: here is not interpreted as the argument of the jump but as a label
for the event because there is no comma after l2.

12

3 Antescofo Model of Time

Actions are computations triggered after a delay that elapses starting from the occurrence
of an event or another action. In this way, Antescofo is both a reactive system, where
computations are triggered by the occurrence of an event, and a temporized system, where
computations are triggered at some date.

They are several temporal coordinate systems, or time frame, that can be used to locate
the occurrence of an event or an action and to define a duration.

3.1 Logical Instant

A logical instant is an instant in time distinguished because it corresponds to:

� the recognition of a musical event;

� the assignment of a variable by the external environment (e.g. through an OSC message
or a MAX/PD binding);

� the expiration of a delay.

Such instant has a date (i.e. a coordinate) in each time frame. The notion of logical instant
is instrumental to maintain the synchronous abstraction of actions and to reduce temporal
approximation. Whenever a logical instant is started, the internal variables $NOW (current
date in the physical time frame) and $RNOW (current date in the relative time frame) are
updated, see section 5.2. Within the same logical instant, synchronous actions are performed
sequentially in the same order as in the score.

e2 e1

delay	
 d1	
 to	
 a1	

logical instant spanned by
the occurrence of an
action

logical instant spanned
by the occurrence of an
event

logical time = precedence between computations

relative time
defined by a tempo

updated in a0, a1, a2 and a3

a1

a2

delay	
 d3	
 to	
 a3	

a3 delay	
 d2	
 to	
 a2	

Note e1
 0 action a0
 d1 action a1
 d2 action a2
Note e2
 d3 action a3

a0 physical time
measured by clocks

beat

ms

beat

score

Figure 5: Logical instant, physical time frame and relative time frame corresponding to a
computed tempo.

13

Computations are supposed to take no time and thus, atomic actions are performed inside
one logical instant of zero duration. This abstraction is a useful simplification to understand
the scheduling of actions in a score. In the real world, computations take time but this
time can be usually ignored and do not disturb the scheduling planned at the score level.
In figure 5, the sequence of synchronous actions appears in the vertical axis. So this axis
corresponds to the dependency between simultaneous computations. Note for example that
even if d1 and d2 are both zero, the execution order of actions a0, a1 and a2 is the same as
the appearance order in the score.

Two different logical instants are located at two distinct points in the physical time, in the
horizontal axis. They are several ways to locate these instants.

3.2 Time Frame

Frames of reference , or time frames are used to interpret delays and to give a date to the
occurrence of an event or to the launching of an action. Two frames of reference are commonly
used:

� the physical time P expressed in seconds and measured by a clock (also called wall
clock time),

� and the relative time which measure the progression of the performance in the score
measured in beats.

More generally, a frame of reference T is defined by a tempo TT which specifies the “passing
of time in T ” relatively to the physical time [?]. In short, a tempo is expressed as a number
of beats per minutes. The tempo TT can be any Antescofo expression. The date tP of the
occurrence of an event in the physical time and the date tT of the same event in the relative
time T are linked by the equation:

tT =

Z tP

0

TT (1)

Variable updates are discrete in Antescofo; so, in this equation, TT is interpreted as a piece-
wise constant function.

Programmers may introduce their own frames of reference by specifying a tempo local to a
group of actions using a dedicated attribute, see section 7.1. This frame of reference is used for
all relative delays and datation used in the actions within this group. The tempo expression
is evaluated continuously in time for computing dynamically the relationships specified by
equation (1).

Antescofo provides a predefined dynamic tempo variable through the system variable
$RT_TEMPO. This tempo is refered as “the tempo” and has a tremendous importance because
it is the time frame naturally associated with the musician part of the score3. This variable

3The $RT_TEMPO is computed by Antescofo to mimics the tracking of the tempo by a human, and imple-
ments an idea of smooth tempo fluctuation, rather than trying to satisfy exactly equation (1) at any moment.
So, for the relative time frame, equation (1) is only an approximation. As a consequence, the current posi-
tion in the score is explicitly given by the variable $BEATPOS which is more accurate than the integration of
$RT_TEMPO. See paragraph 5.2.3.

14

is extracted from the audio stream by the listening machine, relying on cognitive model of
musician behavior [?]. The corresponding frame of reference is used when we speak of “relative
time” without additional qualifier.

15

4 Actions in Brief

Actions are divided into atomic actions performing an elementary computation and com-
pound actions. Compound actions group others actions. An action is triggered by the event
or the action that immediately precedes it.

In the new syntax, an action, either atomic or compound, starts with an optional delay,
see the next paragraph. The old syntax for compound action, where the delay is after the
keyword, is still recognized.

Action Attributes. Each action has some optional attributes which appear as a comma
separated list:

atomic_action @att1 , @att2 := value
compound_action @att1 , @att2 := value { ... }

In this example, @att1 is an attribute limited to one keyword, and @att2 is an attribute
that require a parameter. The parameter is given after the optional sign := .

Some attributes are specific to some kind of actions. There is however one attribute that
can be specified for all actions: label. It is described in sections 4.2. The attributes specific
to a given kind of action are described in the section dedicated to this kind of action.

4.1 Delays

An optional specification of a delay d can be given before any action a. This delay defines
the amount of time between the previous event or the previous action in the score and the
computation of a. At the expiration of the delay, we say that the action is fired (we use also
the word triggered or launched). Thus, the following sequence

NOTE C 2.0
d1 action 1
d2 action 2

NOTE D 1.0

specifies that, in an ideal performance that adheres strictly to the temporal constraint speci-
fied in the score, action 1 will be fired d1 after the recognition of the C note, and action 2
will be triggered d2 after the launching of action 1.

A delay can be any expression. This expression is evaluated when the preceding event
is launched. That is, expression d2 is evaluated in the logical instant where action 1 is
computed. If the result is not a number, an error is signaled.

Zero Delay. The absence of a delay is equivalent to a zero delay. A zero-delayed action is
launched synchronously with the preceding action or with the recognition of its associated
event. Synchronous actions are performed in the same logical instant and last zero time, cf.
paragraph 3.1.

16

Absolute and Relative Delay. A delay can be either absolute or relative. An absolute
delay is expressed in seconds (respectively in milliseconds) an refer to wall clock time or
physical time. The qualifier s (respectively ms) is used to denote an absolute delay:

a 0
1s a 1

(2*$v)ms a 2

Action a 1 occurs one seconds after a 0 and a 2 occurs 2*$v milliseconds after a 1. If the
qualifier s or ms is missing, the delay is expressed in beat and it is relative to the tempo of
the enclosing group (see section 7.1.1).

Evaluation of a Delay. In the previous example, the delay for a 2 implies a computation
whose result may depend of the date of the computation (for instance, the variable $v may
be updated somewhere else in parallel). So, it is important to know when the computation
of a delay occurs: it takes place when the previous action is launched, since the launching
of this action is also the start of the delay. And the delay of the first action in a group is
computed when the group is launched.

A second remark is that, once computed, the delay itself is not reevaluated until its expi-
ration. However, the delay can be expressed in the relative tempo or relatively to a computed
tempo and its mapping into the physical time is reevaluated as needed, that is, when the
tempo changes.

Synchronization Strategies. Delays can be seen as temporal relationships between ac-
tions. There are several ways, called synchronization strategies, to implement these tempo-
ral relationships at runtime. For instance, assuming that in the first example of this section
action 2 actually occurs after the occurrence of NOTE D, one may count a delay of d1+d2�2:0
starting from NOTE D after launching action 2. This approach will be for instance more tightly
coupled with the stream of musical events. Synchronization strategies are discussed in sec-
tion 8.2.

4.2 Label

Labels are used to refers to an action. As for events, the label of an action can be

� a simple identifier,

� a string,

� an integer.

The label of an action are specified using the @name keyword:

... @name := somelabel

... @name somelabel

17

They can be several label for the same action. Contrary to the label of an event, the $-
identifier associated to the label of an action cannot be used to refer to the relative position
of this action in the score4.

Compound actions have an optional identifier (section 7). This identifier is a simple iden-
tifier and act as a label for the action.

4There is no useful notion of position of an action in the score because the same action may be fired several
times (actions inside a loop or a whenever or associated to a curve).

18

5 Expressions

Expressions can be used to compute delay, loop period, group local tempo, breakpoints in
curve specification, and arguments of internal commands end external messages sent to the
environment. Expression are evaluated into values. They are two kind of values:

� scalar or atomic values include the undefined value and the booleans, the integers, the
floats (IEEE double), the strings, the symbols (a representation of the simple identifiers),
the function definitions, the process definitions and the running processes (exec);

� non-atomic values are data structures like tabs (vectors), maps (dictionaries), and
interpolated functions. Such data structures can be arbitrarily nested, to obtain for
example a dictionary of vector of interpolated functions.

Predefined functions can be used to combine values to build new values. The programmer
can defines its own functions, see paragraph 1.2.

5.1 Values

From a programming language perspective, Antescofo is a dynamically typed programming
language: the type of values are checked during the performance and this can lead to an error
at run-time.

When a bad argument is provided to an operator or a predefined function, an error message
is issued on the console and most of the time, the returned value is a string that contains a
short description of the error. In this way, the error is propagated and can be traced back.
See section 11.3 for useful hints on how to debug an Antescofo score.

Compound values are not necessarily homogeneous : for example, the first element of a
vector (tab) can be an integer, the second a string and the third a boolean.

Note that each kind of value can be interpreted as a boolean or as a string. The string
representation of a value is the string corresponding of an Antescofo fragment that can be
used to denote this value.

5.1.1 Value Comparison

Two values can always be compared using the relational operators

< <= = != => >

or the @min and @max operators. The comparison of two values of the same type is as ex-
pected: arithmetic comparison for integers and floats, lexicographic comparison for strings,
etc. When an integer is compared against a float, the integer is first converted into the cor-
responding float. Otherwise, comparing two values of two different types is well defined but
implementation dependant.

19

5.1.2 Testing a Value

Several predicates check if a value is of some type: @is_undef, @is_bool, @is_string, @is_symbol,
@is_int, @is_float, @is_numeric (which returns true if the argument is either @is_int or
@is_float), @is_map, @is_interpolatedmap, @is_tab, @is_fct (which returns true if the argu-
ment is an intentional function), @is_function (which returns true if the argument is either
an intentional function or an extensional one), @is_proc, and @is_exec.

5.1.3 Undefined Value

There is only one value of type Undefined. This value is the value of a variable before any
assignment. It is interpreted as the value false if needed.

The undefined value is used in several other circumstances, for example as a return value
for some exceptional cases in some predefined functions.

5.1.4 Boolean Value

They are two boolean values denoted by the two symbols true and false. Boolean values
can be combined with the usual operators:

� the negation ! written prefix form: !false returns true

� the logical disjunction || written in infix form: $a || $b

� the logical conjunction && written in infix form: $a && $b

Logical conjunction and disjunction are “lazy”: a && b does not evaluate b if a is false and
a || b does not evaluate b if a is true.

5.1.5 Integer Value

Integer values are written as usual. The arithmetic operators +, -, *, / and % (modulo) are
the usual ones with the usual priority. Integers and float values can be mixed in arithmetic
operations and the usual conversions apply. Similarly for the relational operators. In boolean
expression, a zero is the false value and all other integers are considered to be true.

5.1.6 Float Value

Float values are handled as IEEE double (as in the C language). The arithmetic operators,
their priority and the usual conversions apply.

For the moment, there is only a limited set of predefined functions:

@abs @acos @asin @atan @cos @cosh @exp
@floor @log10 @log2 @log @max @min @pow
@ceil @sinh @sin @sqrt @tan

20

These functions correspond to the usual IEEE mathematical functions.

There is an additional function @rand, used to generate a random number between 0 and d:
@rand(d).

Float values can be implicitly converted into a boolean, using the same rule as for the
integers.

5.1.7 String Value

String constant are written between quote. To include a quote in a string, the quote must be
escaped:

print "this␣is␣a␣string␣with␣a␣\"␣inside"

Others characters must be escaped in string: \n is for end of line (or carriage-return), \t for
tabulation, and \\ for backslash.

The + operator corresponds to string concatenation:

let $a := "abc" + "def"
print $a

will output on the console abcdef. By extension, adding a value a to a string concatenate the
string representation of a to the string:

let $a = 33
print ("abc" + $a)

will output abc33.

5.1.8 Intentional Functions

Intentional functions f are defined by rules (i.e. by an expression) that specify how an image
f(x) is associated to an element x. Intentional functions can be defined and associated to an
@-identifier using the @fun_def construct introduced in section 1.2 page 6. Some intentional
functions are predefined and available in the initial Antescofo environment like the IEEE
mathematical functions.

There is no difference between predefined intentional functions and user’s defined inten-
tional functions except that in a Boolean expression, a user’s defined intentional function is
evaluated to true and a predefined intentional function is evaluated to false.

In an Antescofo expression, the @-identifier of a function denotes a functional value that
can be used for instance as an argument of a higher-order functions (see examples of higher-
order predefined function in section 5.1.9 for map building and map transformations).

5.1.9 Map Value

A map is a dictionary associating a value to a key. The value can be of any kind, as well as
the key:

map{ (k 1,v 1), (k 2,v 2), : : : }

21

A map is an ordinary value and can be assigned to a variable to be used latter. The usual
notation for function application is used to access the value associated to a key:

let $dico = map{ (1, "first"), (2, "second"), (3, "third") }
...
print ($dico (1)) ($dico (3.14))

will print

first "<Map:␣Undefined >"

The string "<Map:␣Undefined>" is returned for the second call because there is no correspond-
ing key.

Extensional and Intentional Functions. A map can be seen as a function defined by
extension: an image (the value) is explicitly defined for each element in the domain (i.e., the
set of keys). Interpolated maps defined in the next section are also extensional functions.

Extensional function are handled as values in Antescofo but this is also the case for
intentional functions, see the previous section 5.1.8.

In an expression, extensional function or intentional function can be used indifferently
where a function is expected.

Domain, Range and Predicates. One can test if a map m is defined for a given key k
using the predicate @is_defined(m, k).

The predefined @is_integer_indexed applied on a map returns true if all key are integers.
The predicate @is_list returns true if the keys form the set f1; : : : ; ng for some n. The
predicate @is_vector returns true if the predicate @is_list is satisfied and if every element
in the range satisfies @is_numeric.

The functions @min_key, resp. @max_key, computes the minimal key, resp. the maximal
key, amongst the key of its map argument.

Similarly for the functions @min_val and @max_val for the values of its map argument.

In boolean expression, an empty map acts as the value false. Other maps are converted
into the true value.

Constructing Maps. These operations act on a whole map to build new maps:

� @select_map restricts the domain of a map: select_map(m, P) returns a new map m0

such that m0(x) = m(x) if P (x) is true, and undefined elsewhere. The predicate P is
an arbitrary function (e.g., it can be a user-defined function or a dictionary).

� The operator @add_pair can be used to insert a new (key, val) pair into an existing
map:

@add_pair($dico , 33, "doctor")

enriches the dictionary referred by $dico with a new entry (no new map is created).

� @shift_map(m, n) returns a new map m0 such that m0(x+ n) = m(x)

22

� @gshift_map(m, f) generalizes the previous operator using an arbitrary function f

instead of an addition and returns a map m0 such that m0(f(x)) = m(x)

� @map_val(m, f) compose f with the map m: the results m0 is a new map such that
m0(x) = f

�
m(x)

�
.

� @merge combines two maps into a new one. The operator is asymmetric, that is, if
m = merge(a, b), then:

m(x) =

(
a(x) if @is_defined(a,x)
b(x) elsewhere

Extension of Arithmetic Operators. Arithmetic operators can be used on maps: the
operator is applied “pointwise” on the intersection of the keys of the two arguments. For
instance:

let $d1 := MAP{ (1, 10), (2, 20), (3, 30) }
let $d2 := MAP{ (2, 2), (3, 3), (4, 4) }
let $d3 := $d1 + $d2
print $d3

will print

MAP{ (2, 22), (3, 33) }

If an arithmetic operators is applied on a map and a scalar, then the scalar is implicitly
converted into the relevant map:

$d3 + 3

computes the map MAP{ (2, 25), (3, 36) }.

Maps as Lists and Vectors. Vectors and lists can be emulated by map: a “map-emulated
list” is a map satisfying the predicate @is_list and a “map-emulated vector” satisfies @is_vector.
Several functions are defined on lists and vectors:

� Notice that @map_val is similar to the map function on list that exists in Lisp.

� @concat(a, b) returns the concatenation of two lists.

� Arithmetic operations on vectors are done pointwise.

However, using directly tab, cf. section 5.1.11, is probably simpler.

Maps transformations.

� @listify applied on a map m builds a new map where the key of m have been replaced
by their order in the ordered set of keys. For instance, given

$m := map{ (3, 3), ("abc", "abc"), (4, 4)}

23

@listify($m) returns

map{ (1, 3), (2, 4), (3, "abc") }

because we have 3 < 4 < "abc".

� @map_reverse applied on a list reverse the list. For instance, from:

map{ (1, v1), (2, v2), ..., (1, vp), }

the following list is build:

map{ (1, vp), (2, vp�1), ..., (1, v1), }

� @compose_map: given

$p := map{ (k1, p1), (k2, p2), ..., (kn, pn), }
$q := map{ (k0

1
, q1), (k0

2
, q2), ..., (k0m, qm), }

@compose_map($p, $q) construct the map:

map{ ..., (pk, qk), ... }

if it exists a k such that

$p(k) = pk and $q(k) = qk

Score reflected in a Map. Two functions can be used to reflect the events of a score into
a map5:

� @make_score_map(start, stop) returns a map where the key is the event number (its
rank in the score) and the associated value, its position in the score in beats (that is,
its date in relative time). The map contains the key corresponding to events that are
in the interval [start,stop] (interval in relative time).

� @make_duration_map(start, stop) returns a map where the key is the event number
(its rank in the score) and the associated value, its duration in beats (relative time).
The map contains the key corresponding to events that are in the interval [start,stop]
(interval in relative time).

The corresponding maps are vectors.

History reflected in a map. The sequence of the values of a variable is keep in an history.
This history can be converted into a map, see section 5.2.1 pp. 26.

5Besides @make_score_map and @make_duration_map, recall that the label of an event in $-form, can
be used in expressions as the position of this event in the score in relative time.

24

5.1.10 InterpolatedMap Value

Interpolated map functions are piecewise linear functions defined by a set of points (xi; yi):

let $f := imap{ (0, 0), (1.2, 2.4), (3.0, 0) }
print $f (2.214)

defines a kind of “triangle” function. The value of $f at a point x between xj and xj+1 is the
linear interpolation of yj and yj+1.

The linear function on [x0; x1] is naturally extended on] �1; x0] by prolonging the line
that passes through (x0; y0) and (x1; y1) and similarly for [xmax;+1[. This natural extension
defines the value of the interplated map on a point x outside [x0; xmax].

There exist a few predefined function to manipulate interpolated maps: @integrate to
integrate the piecewise linear function on [x0; xmax] and @bounded_integrate to integrate the
function on an arbitrary interval.

5.1.11 Tab Value

Tab values are simple vectors.

Tab function @tab_map, @concat, @min_val, @max_val, @size, @tab_reverse, @push_back,
@resize

5.1.12 Proc Value

The ::-name of a processus can be used in an expression to denote the corresponding process
definition, in a manner similar of the @-identifier used for intensionnal functions (see 5.1.8).
Such value are qualified as proc value. Like intensionnal functions, proc value are first class
value. They can be passed as argument to a function or a procedure call.

The main operation on proc value is “calling the corresponding process”, see section 9.

5.1.13 Exec Value

An exec value refers to a running process. Such value are created when a process is instan-
tiated, see section 9. This value can be used to kill the corresponding process instanciation.
It is also used to access the values of the local variables of the process.

Warning: These features are still experimental.

5.2 Variables

Antescofo variables are imperative variables: they are like a box that holds a value. The
assignment of a variable consists in changing the value in the box:

let $v := expr

25

An assignment is an action, and as other action, it can be done after a delay. See sect. 6.1.

Variables are named with a $-identifier. By default, a variable is global, that is, it can be
referred in an expression everywhere in a score.

Note that variables are not typed: the same variable may holds an integer and later a
string.

5.2.1 Historicized Variables

Variable are managed in a imperative manner. The assignment of a variable is seen as an
internal event that occurs at some date. Such event is associated to a logical instant. Each
Antescofo variable has a time-stamped history. So, the value of a variable at a given date can
be recovered from the history, achieving the notion of stream of values. Thus, $v corresponds
to the last value (or the current value) of the stream. It is possible to access the value of a
variable at some date in the past using the dated access :

[date]:$v

returns the value of variable $v at date date . The date can be expressed in three different
ways:

� as an update count: for instance, expression [2#]:$v returns then antepenultimate value
of the stream;

� as an absolute date: expression [3s]:$v returns the value of $v three seconds ago;

� and as a relative date: expression [2.5]:$v returns the value of $v 2.5 beats ago.

For each variable, the programmer may specify the size n of its history, see next section.
So, only the n “last values” of the variable are recorded. Accessing the value of a variable
beyond the recorded values returns an undefined value.

User variables are assigned within an augmented score using the let construct. However,
they can also be assigned by the external environment, using a dedicated API.

History reflected in a map. The history of a variable may be accessed also through a
map. Three special functions are used to build a map from the history of a variable:

� @history_map($x) returns a list where element n is the n� 1 to the last value of $x. In
other word, the element associated to 1 in the map is the current value, the previous
value is associated to element 2, etc. The size of this list is the size of the variable
history, see the paragraph History Length of a Variable below. However, if the number
of update of the variable is less than the history length, the corresponding undefined
values are not recorded in the map.

� @history_map_date($x) returns a list where element n is the date (physical time) of
n� 1 to the last update of $x. The previous remark on the map size applies here too.

� @history_map_rdate($x) returns a list where element n is the relative date of n � 1 to
the last update of $x. The previous remark on the map size applies here too.

26

These three function are special forms: they accept only a variable as an argument. These
functions build a snapshot of the history at the time they are called. Later, the same call will
build eventually different maps. beware that the history of a variable is managed as a ring
buffer: when the buffer is full, any new update takes the place of the oldest value.

5.2.2 Variables Declaration

Antescofo variables are global by default, that is visible everywhere in the score or they
are declared local to a group which limits its scope and constraints its life. For instance, as
common in scoped programming language, the scope of variable declared local in a loop is
restricted to one instance of the loop body, so two loop body refers to two different instances
of the local variable. This is also the case for the body of a whenever or of a process.

Local Variables. To make a variable local to a scope, it must be explicitly declared using
a @local declaration. A scope is introduced by a group, a loop, a whenever or a process
statement, see section 7. The @local declaration, may appear everywhere in the scope and
takes a comma separated list of variables:

@local $a, $i , $j, $k

They can be several @local declaration in the same scope but all local variables can be
accessed from the beginning of the scope, irrespectively of the location of their declaration.

A local variable may hide a global variable and there is no warning. A local variable can
be accessed only within its scope. For instance

let $x := 1
group {

loc $x
let $x := 2
print "local␣var␣$x:␣" $x

}
print "global␣var␣$x:␣" $x

will print

local var $x 2
global var $x 1

History Length of a Variable. For each variable, Antescofo records only an history of
limited size. This size is predetermined, when the score is loaded, as the maximum of the
history sizes that appears in expressions and in variable declarations.

In a declaration, the specification of an history size for the variable $v takes the form:

n :$v

where n is an integer, to specify that variable $v has an history of length at least n .

To make possible the specification of an history size for global variables, there is a decla-
ration

27

@global $x, 100:$y

similar to the @local declaration. Global variable declarations may appear everywhere an
action may appear. Variables are global by default, thus, the sole purpose of a global decla-
ration, is to specify history lengths.

The occurence of a variable in an expression is also used to determine the length of its
history. In an expression, the n th past value of a variable is accessed using the dated access
construction (see 5.2):

[n #]:$v

When n is an integer (a constant), the length of the history is assumed to be at least n .

When there is no declaration and no dated access with a constant integer, the history size
has an implementation dependant default size.

Lifetime of a Variable. A local variable can be referred as soon as its nearest enclosing
scope is started but it can persist beyond the enclosing scope lifetime. For instance, consider
this example :

Group G {
@local $x
2 Loop L {

... $x ...
}

}

The loop nested in the group run forever and accesses to the local variable $x after “the end”
of the group G. This use of $x is perfectly legal. Antescofo manages the variable environment
efficiently and the memory allocated for $x persists as long as needed but no more.

5.2.3 System Variables

There are several variables which are updated by the system in addition to $RT_TEMPO. Com-
posers have read-only access to these variables.

Variable $NOW corresponds to the absolute date of the “current instant” in seconds. The
“current instant” is the instant at which the value of $NOW is required. Variable $RNOW is the
date in relative time (in beats) of the “current instant”. Variables $PITCH, $BEATPOS and $DUR
are respectively the pitch, the position in the score and the duration of the last detected
event.

Note that when the listening machine is waiting an event, $BEATPOS increases until reaching
the position in the score of the waited event. The $BEATPOS is stuck until the occurrence of
this event or the detection of a subsequent event (making this one missed).

5.2.4 Variables and Notifications

Notification of events from the machine listening module drops down to the more general case
of variable-change notification from an external environment. The Reactive Engine maintains
a list of actions to be notified upon the update of a given variable.

28

Actions associated to a musical event are notified through the $BEATPOS variable. This is
also the case for the group, loop and curve constructions which need the current position in the
score to launch their actions with loose synchronization strategy. The whenever construction,
however, is notified by all the variables that appear in its condition.

The Antescofo scheduler must also be globally notified upon any update of the tempo
computed by the listening module and on the update of variables appearing in the local
tempi expressions.

Temporal Shortcuts. The notification of a variable change may trigger a computation
that may end, directly or indirectly, in the assignment of the same variable. This is known
as a “temporal shortcut” or a “non causal” computation. The Event Manager takes care of
stopping the propagation when a cycle is detected. See section 7.6.1. Program resulting
in temporal shortcuts are usually considered as bad practice and we are developing a static
analysis of augmented scores to avoid such situations.

5.2.5 Dates functions

Two functions let the composer know the date of a logical instant associated to the assignment
of a variable $v: @date([n#]:$v) returns the date in the absolute time frame of the nth to
last assignement of $v and @rdate([n#]:$v) returns the date in the relative time frame.

These functions are special forms: they accept only a variable or the dated access to a
variable.

5.3 Operators and Predefined Functions

Most of the operators and predefined functions have been sketched in the section 5.1. We
sketch here operators or function that are not linked to a specific type.

Conditionnal Expression. An important operator is the conditional:

if (bool_exp , exp 1, exp 2)

returns the value exp 1 if bool_exp evaluates to true and else exp 2. The parenthesis are
mandatory.

@size. Function @size accepts any kind of argument and returns:

� for non-atomic values, the “size” of the arguments; that is, for a map, the number of
entries in the dictionary and for an imap, the number of breakpoints;

� for scalar values, @size returns a strictly negative number. This negative number de-
pends only on the type of the argument, not on the value of the argument.

The “size” of an undefined value is -1, and this can be used to test if a variable refers to an
undefined value or not.

29

The addition is heavily overloaded in Antescofo. If one of the arguments of + is a string,
then the other argument is converted (if needed) into a string and the result of the operation
is the concatenation of the two strings.

5.4 Auto-Delimited Expressions in Actions

Expressions appear everywhere to parameterize the actions and this may causes some syntax
problems. For example when writing:

print @f (1)

there is an ambiguity: it can be interpreted as the message print with two arguments (the
function @f and the integer 1) or it can be the message print with only one argument (the
result of the function @f applied to the argument 1). This kind of ambiguity appears in other
places, as for example in the specification of the list of breakpoints in a curve.

The cause of the ambiguity is that we don’t know where the expression starting by @f
finishes. This leads to distinguish a subset of expressions: auto-delimited expressions
are expressions that cannot be “extended” with what follows. Auto-delimited expressions
are normal expressions: it is a syntactic property. For example, integers are auto-delimited
expressions and we can write

print 1 2

without ambiguity (this is the message print with two arguments and there is no other
possible interpretation). Variables are others examples of auto-delimited expressions.

Antescofo accepts only auto-delimited expressions to avoid possible ambiguities in the
places where this is needed, i.e.:

� in the specification of a delay,

� in the arguments of a message,

� in the arguments of an internal command,

� in the specification list of breakpoints in a curve,

� in the specification of an attribute value

� in the specification of a when or until clause,

If an expression is provided where an auto-delimited expression is required, a syntax error is
declared. But, every expression between braces is an auto-delimited expression.

So, a rule of thumb is to put the expressions in the listed contexts between braces, when
this expression is more complex than a constant or a variable.

30

6 Atomic Actions

An atomic action corresponds to

� an assignment,

� the abort of another action;

� an external action, that is: a MAX/PD message or an OSC message,

� an internal command,

� an assertion.

6.1 Assignments

The assignment of a variable by the value of an expression is an atomic action:

let $v := expr

The let keyword is optional but make more clear the distinction between the delay and the
assigned variable:

$d $x := 1 ; is equivalent to
$d let $x := 1

and the let keyword it is mandatory in vector assignment with a delay (see sect.??):

$d let $t[$index] := $val

Expressions in the right hand side of := are described in section 5. A variable as a value
before its first assignment: its value is the undefined value (sect. 5.1.3).

The assignment of a value to a variable may triggers some activity:

� the evaluation of a whenever that depends on this variable (see section 7.6);

� the reevaluation of the delays that depends on a relative tempo that depends on this
variable6;

System variables cannot be assigned: $RT_TEMPO, $PITCH, $BEATPOS, $DUR, $NOW, $RNOW. These
variables are read-only for the composer: they are assigned by the system during the per-
formance. However, like usual variables, their assignment may trigger some activities. For
instance delays expressed in the relative time are updated on $RT_TEMPO changes. Tight ac-
tions waiting on a specific event (cf. section 8.1.2) are notified on $BEATPOS changes. Etc.
Refer to section 5.2.4 for additional information.

6As mentioned in section 4.1, the expression specifying a delay is evaluated only once, when the delay is
started. It is not re-evaluated after that, even if the variable in the expression are assigned to new values.
However, if the delay is expressed in a relative time, its conversion in physical time must be adjusted when
the corresponding tempo changes.

31

6.2 Aborting and Cancelling an Action

An atomic action takes “no time” to be processed. So, aborting an atomic action is irrelevant:
the action is either already fired or has not already been fired. On the other hand, compound
actions act as containers for others actions and thus span over a duration. We say that a
compound action is active when it has been fired itself but some of its nested actions are
still waiting to be fired. Compound action can be aborted while they are active.

Cancelling an action refers to another notion: the suppression of an action from the score.
Both atomic and compound action can be cancelled.

6.2.1 Abort of an Action

After a compound action has been launched, it can be aborted, meaning that the nested
actions not already fired, will be aborted. They are two possible syntax:

kill delay name
delay abort name

kill abort where name is the label of an action. If the named action is atomic or not
active, the command has no effect. If the named action is an active compound action, the
nested remaining actions are aborted. Beware that distinct actions may share the same
label: all active actions labeled by name are aborted together. Also one action can have
several occurrences (e.g. the body of a loop or the body of a whenever see section 7.6). All
occurrences of an action labeled by name are aborted.

Abort and the hierarchical structure of compound actions. By default, the abort
command applies recursively on the whole hierarchical structure. The attribute @norec can
be used to abort only the top level actions of the compound. Here is an example:

1 group G1 {
2 1 a 1
3 1 group G2 {
4 0.2 b 1
5 0.5 b 2
6 0.5 b 3
7 }
8 1 a 2
9 1 a 3

10 }
11 2.5 abort G1

The action abort takes place at 2.5 beats after the firing of G1. At this date, actions a 1 and
b 1 have already been fired. The results of the abort is to suppress the future firing of a 2,
a 3, b 2 and b 3. If line 11 is replaced by

2.5 abort G1 @norec

then, actions a 2 and a 3 are aborted but not actions b 2 and b 3.

32

6.2.2 Cancelling an Action

The action

kill delay nameA of nameG
delay abort nameA of nameG

cancels the action labeled nameA in the group labeled nameG . Cancelling an action make
sense only if the action has not been already fired. For example, if the action is in a loop,
the cancellation has an effect only on the firing of the action that are in the future of the
cancellation.

The effect of cancelling an action is similar to its syntactic suppression from the score.
Here is an example

1 group G1 {
2 1 a 1
3 0 abort action_to_suppress of G1
4 1 a 2 @name := action_to_supress
5 1 a 3
6 }

The cancelling of the action at line 4 by the abort ... of at line 3 results in firing action a 1
at date 1 and action a 3 at date 2.

Notice that this behavior departs in two ways from the previous abort command: (1)
you can inhibit an atomic action, and (2) the following actions are fired earlier because the
delay of the inhibited action is suppressed. This second point also distinguish the behavior
of inhibited action from the behavior of a conditional action when the condition evaluates to
false (compare with the example in section ??).

6.3 Max Messages

The computations that can be performed within an Antescofo score are somewhat limited.
Indeed, the role of Antescofo is to act as a coordinator between multiple tasks and not to
be a general purpose language. So, Antescofo includes powerful features to interact with
external processes. Such actions are called external actions. They are currently two main
mechanisms to interact with external tasks: OSC messages described in the next section and
MAX/PD messages7.

A MAX/PD message starts by an optional delay followed by a simple identifier referring
to a MAX or PD receiver . This identifier must be different from the simple identifiers listed
in section 1.3 page 7.

It is then followed by a sequence of expressions, simple identifiers and @-identifiers that are
the arguments of the message. The message ends with a carriage return (the end of the line)

For instance,

let $a := 1

7The interaction with MAX or PD is asymmetric: inlet and outlet are used to interact with the rest of a
patch, but provide a fixed interface, see sections 6.6 and 11.5. On the contrary, arbitrary messages can be sent
from an Antescofo score to external MAX objects.

33

print "the␣value␣of␣the␣variable␣a␣is␣" $a
print and here is a second message (2 * $a)

will print
the value of the variable a is 1
and here is a second message 2

Indeed, Antescofo expressions are evaluated to give the argument of the message. For the first
print, there is two arguments: a string and a variable which evaluates to 1. Each Antescofo
value is converted into the appropriate MAX/PD value (Antescofo string are converted into
MAX/PD string, Antescofo integer into MAX/PD integer, etc.). In the second printmessage
they are 7 arguments: the first six are simple identifiers converted into the corresponding
symbol and the seventh argument is evaluated into an integer.

When an Antescofo string is converted into a MAX/PD string, the delimiters (the quote
") do not appear. If one want these delimiters, you have to introduce it explicitly in the
string, using an escaped quote \":

print "\"this␣string␣will␣appear␣quoted \""

prints on the console
"this␣string␣will␣appear␣quoted"

6.4 OSC Messages

The OSC protocol8 can be used to interact with external processes using the UDP protocol.
It can also be used to make two Antescofo objects interact within the same patch. Contrary
to MAX or PD messages, OSC message can be sent and received at the level of the Antescofo
program. The embedding of OSC in Antescofo is done through 4 primitives.

6.4.1 OSCSEND

This keyword introduces the declaration of a named OSC output channel of communication.
The declaration takes the form:

oscsend name host : port msg_prefix

After the OSC channel has been declared, it can be used to send messages. Sending a message
takes a form similar to sending a message to MAX or PD:

name arg 1 ... argn

The idea is that this construct and send the osc message
msg_prefix arg 1 ... argn

where msg_prefix is the OSC address declared for name . Note that to handle different
message prefixes, different output channels have to be declared. The character / is ac-
cepted in an identifier, so the usual hierarchical name used in message prefixes can be used
to identify the output channels. For instance, the declarations:

8http://opensoundcontrol.org/

34

http://opensoundcontrol.org/

oscsend extprocess/start test.ircam.fr : 3245 "start"
oscsend extprocess/stop test.ircam.fr : 3245 "stop"

can be used to invoke later

0.0 extprocess/start "filter1"
1.5 extprocess/stop "filter1"

The arguments of an oscsend declaration are as follow:

� name is a simple identifier and refers to the output channel (used later to send messages).

� host is the optional IP address (in the form nn.nn.nn.nn where nn is an integer) or
the symbolic name of the host (in the form of a simple identifier). If this argument is
not provided, the localhost (that is, IP 127.0.0.1) is assumed.

� port is the mandatory number of the port where the message is routed.

� msg_prefix is the OSC address in the form of a string.

A message can be send as soon as the output channel has been declared. Note that sending
a message before the definition of the corresponding output channel is interpreted as sending
a message to MAX.

6.4.2 OSCRECV

This keyword introduces the declaration of an input channel of communication. The decla-
ration takes the form:

oscrecv name port msg_prefix $v1 ... $vn

where:

� name is the identifier of the input channel, and its used later to stop or restart the
listening of the channel.

� port is the mandatory number of the port where the message is routed.

� On the previous port, the channel accepts messages with OSC address msg_prefix .
Note that for a given input channel, the message prefixes have to be all different.

� When an OSC message is received, the argument are automatically dispatched in the
variables $v1 . . . $vn. If there is less variables than arguments, the remaining arguments
are simply thrown away . Otherwise, if there is less arguments than variables, the
remaining variables are set to their past value .

Currently, Antescofo accepts only OSC int32, int64, float and string. These value are
converted respectively into Antescofo integer, float and string.

A whenever can be used to react to the reception of an OSC message: it is enough to put
one of the variables $vi as the condition of the whenever (see below).

The reception is active as soon as the input channel is declared.

35

6.4.3 OSCON and OSCOFF

These two commands take the name of an input channel. Switching off an input channel
stops the listening and the message that arrives after, are ignored. Switching on restarts the
listening. These commands have no effect on an output channel.

6.5 I/O in a File

Actually it is only possible to write an output file. The schema is similar to OSC messages:
a first declaration open and bind a file to a symbol. This symbol is then used to write out in
the file. Then the file is eventually closed. Here is a typical example:

openoutfile out "/tmp/tmp.txt"
...
out "\n\tHello␣Wolrd\n\n"
...
closefile out

After the command openoutfile, the symbol out can be used to write in file /tmp/tmp.txt.
In command, out is followed by a list of expressions, as for OSC or MAX/PD commands.
Special characters in strings are interpreted as usual.

The file is automatically closed at Antescofo exit. If not explicitly closed, it remains open
between program load, start and play. Currently, there is only one possible mode to open a
file: if it does not exists, it is created. If it already exists, it is truncated to zero at opening.

6.6 Internal Commands

Internal commands correspond to the MAX or PD messages accepted by the antescofo ob-
ject in a patch. The “internalization” of these commands as Antescofo primitive actions
makes possible the control of the MAX or the PD antescofo object from within an An-
tescofo score.

An internal command start with a predefined simple name following the pattern antescofo::xxx
where the suffix xxx is the head of the corresponding MAX/PD message recognized by An-
tescofo (cf. section 11.5) and is one of the following:

� antescofo::actions (one argument of type string)

� antescofo::analysis (one argument of type int)

� antescofo::tempo (one argument of type float)

� antescofo::before_nextlabel (no argument)

� antescofo::bpmtolerance (one argument of type float)

� antescofo::calibrate (three arguments of type int)

� antescofo::clear (no argument)

� antescofo::gamma (one argument of type float)

36

� antescofo::getcues (no argument)

� antescofo::getlabels (no argument)

� antescofo::gotobeat (one argument of type float)

� antescofo::gotocue (one argument of type string

� antescofo::gotolabel (one argument of type string

� antescofo::harmlist (multiple arguments of type float corresponding to a vector)

� antescofo::info (no argument)/WHYinfo a completer

� antescofo::jumptocue (one argument of type string

� antescofo::jumptolabel (one argument of type string

� antescofo::killall (no argument)

� antescofo::mode (one argument of type int)

� antescofo::nextaction (no argument)

� antescofo::nextevent (no argument)

� antescofo::nextfwd (no argument)

� antescofo::nextlabel (no argument)

� antescofo::nofharm (one argument of type int)

� antescofo::normin (one argument of type float)

� antescofo::obsexp (one argument of type float)

� antescofo::pedalcoeff (one argument of type float)

� antescofo::pedaltime (one argument of type float)

� antescofo::pedal (one argument of type int)

� antescofo::piano (one argument of type int)

� antescofo::playfrombeat (one argument of type float)

� antescofo::playfrom (one argument of type string)

� antescofo::play (no argument)

� antescofo::preload (two argumenst of type string) preloads a score and store it under
a name (the second argument) for latter use;

� antescofo::preventzigzag (one argument of type string)

� antescofo::previousevent (no argument)

37

� antescofo::previouslabel (no argument)

� antescofo::printfwd (no argument)

� antescofo::printscore (no argument)

� antescofo::read (one argument of type string) loads the corresponding Antescofo
score;

� antescofo::report (no argument)

� antescofo::score (one argument of type string) loads the corresponding Antescofo
score;

� antescofo::start (one argument of type string)

� antescofo::stop (no argument)

� antescofo::suivi (one argument of type int)

� antescofo::tempoinit (one argument of type int)

� antescofo::temposmoothness (one argument of type float)

� antescofo::tune (one argument of type float)

� antescofo::variance (one argument of type float)

� antescofo::verbosity (one argument of type int)

� antescofo::verify (one argument of type int)

� antescofo::version (no argument) print the version on the MAX console;

As for MAX/PD or OSC message, there is no other statement, action or event defined after
the internal command until the end of the line..

6.7 Assertion assert

The action assert checks that the result of an expression is true. If not, the entire program
is aborted. This action is provided as a facility for debugging and testing, especially with the
standalone version of Antescofo (in the Max or PD version, the embedding host is aborted
as well).

38

7 Compound Actions

Compound actions act as containers for others actions. The actions “inside” a container
inherits some of the attribute of the container. The cations in this container are spanned in a
parallel thread : their timing does not impact the sequence of actions in which the container
is embedded.

The nesting of containers creates a hierarchy which can be visualized as an inclusion tree.
The father of an action is its immediately enclosing container, if it exists.

We present first the group structure which is the basic container: all other compound
actions are variations on this structure.

7.1 Group

The group construction gathers several actions logically within a same block that share com-
mon properties of tempo, synchronization and errors handling strategies in order to create
polyphonic phrases.

delay group name attributes { actions_list }

The specification of the delay , name and attributes are optional. The name is a simple
identifier that acts as a label for the action.

The action following an event are members of an implicit group named top_gfwd_xxx
where xxx is a number unique to the event.

7.1.1 Local Tempo.

A local tempo can be defined for a group using the attribute:

group G @tempo := expr ...

expr is an arbitrary expression that defines the passing of time for the delay of the action of
G that are expressed in relative time, see section 3.2.

7.1.2 Attributes of Group and Compound Actions

Synchronization (cf. section 8.1)

group ... @loose ...
group ... @tight ...

and error strategies (cf. section 8.2)

group ... @global ...
group ... @local ...

can be specified for group bt also for every compound actions (loop, curve, etc.) using the
corresponding attributes. If they are not explicitly defined, the attributes of an action are
inherited from the enclosing action. Thus, using compound actions, the composer can create
easily nested hierarchies (groups inside groups) sharing an homogeneous behavior.

39

7.1.3 Instances of a Group

A group G is related to an event or another action. When the event occurs or the action is
triggered, Antescofo waits the expiration of its delay before launching the actions composing
the group. We say that an instance of the group is created and launched. The instance is
said alive while there is an action of the group waiting to be launched. In other word, an
instance expires when the last action of the group is performed.

We make a distinction between the group and its instances because several instances of the
same group can exists and can even be alive simultaneously. Such instances are created by
loop, parallel iterations parfor, reaction to logical conditions whenever and processes proc.
These constructions are described below.

Note that when the name of a group is used in an abort action, all alive instances of this
group are killed9.

7.1.4 Aborting a group

There are several ways to provoque the premature end of a group, or more generally, of any
compound action:

� using an abort action, see 6.2.1,

� using a until (or a while) logical clause,

� using a during temporal clause.

The until Clause. There is a dual of the until keyword:

group ... { ... } until (exp)

is equivalent to

group ... { ... } while (!exp)

The during Clause.

7.2 Conditional Actions: If

A conditional action is a construct that performs different actions depending on whether a
programmer-specified boolean condition evaluates to true or false. A conditional action takes
the form:

if (boolean condition)
{

actions launched if the condition evaluates to true
}

9It is possible to kill a specific instance using the exec that refers to this instance. This feature will be
implemented soon.

40

or

if (boolean condition)
{

actions launched if the condition evaluates to true
}
else
{

actions launched if the condition evaluates to false
}

As the other actions, a conditional action can be prefixed by a delay. Note that the actions
in the if and in the else clause are evaluated as if they are in a group. So the delay of these
actions does not impact the timing of the actions which follows the conditional. For example

if ($x) { 5 print HELLO }
1 print DONE

will print DONE one beat after the start of the conditional independently of the value of the
condition.

The actions of the “true” (resp. of the “else”) parts of a condition are members of an
implicit group named xxx _true_body (resp. xxx _false_body) where xxx is the label of the
conditional itself.

7.3 Sequential iterations: Loop

The loop construction is similar to group where actions in the loop body are iterated de-
pending on a period specification. Each iteration takes the same amount of time, a period.

Stopping a Loop. The optional until or while clause is evaluated at each iteration and
eventually stops the loop For instance, the declarations on the left produce the timing of the
action’s firing figured in the right:

let $cpt = 0
loop L 1.5
{

let $cpt = $cpt + 1
0.5 a 1
0.5 a 2

}
until ($cpt <= 3)

a1 a2 a1 a2 a1 a2

If an until condition is not provided, nor a during condition, the loop will continue forever
but it can be killed by an abort command:

loop ForEver 1
{

print OK
}

3.5 abort ForEver

will print only 3 OK.

41

7.4 Parallel Iterations: ParFor

The previous construction spans a group sequentially (one after the other, with a given
period). The parfor action (for parallel iteration) instantiates in parallel a group for each
elements in an iteration set. The simplest example is the iteration on the element of a vector
(tab) :

$t := tab [1 2 3]
parfor $x in $t
{

(3 - $x) print OK $x
}

will trigger in parallel a group for each element in the vector referred by $t. The iterator
variable $x takes for each group the value of its corresponding element in the vector. The
result of this example is to print successively

OK 3
OK 2
OK 1

The general form of a parallel iteration is:
parfor variable in expression
{

actions...
}

where expression evaluates to a vector or a proc. In this case, the iteration variable takes
an exec value corresponding to the active instances of the proc.

Parallel iterations accepts also maps10 using two variables to refers to the keys and values
in the map:

$m := map [(1, "one"), (2, "two"), (3, "three")]
parfor $k, $v in $m
{

print $k "␣=>␣" $v
}

will print:
1 => one
2 => two
3 => three

7.5 Sampling parameters: Curve

The curve construction samples a set of predefined curves to fire an action repeatedly with
the sampled points. The predefined curves are defined by a sequence of points and a sequence
of interpolation methods. When time passes, the curve is traversed and the corresponding
action fired at the sampling point.

10Interpolated maps are planned.

42

We introduce the syntax11 starting with the simple case of one curve. Then we detail the
complete features of this construction.

7.5.1 A Simple Curve

The curve is defined by a breakpoint function. In the example, the curve starts at 0. Two
beats later, the curve reaches 2 and 8 additional beats later, the curve finishes at 4. Between
the breakpoints, the interpolation is linear, as indicated by the keyword @linear.

curve C
@action := { print $y } ,
@grain := 0.1

{
$y
{

{ 0 } @type "linear"
2 { 2 } @type "linear"
8 { 4 }

}
}

time

$a

4

2

2 8 2 10

This curve is parameterized by the variable $y. The interpolated value of the curve is assigned
to $y at each time step. The time step is defined by the @grain attribute. The specification
of the values of $y when the time passes, is called a parameter clause.

7.5.2 Actions Fired by a Curve

Each time the parameter $y is assigned, the action specified by the attribute @action is also
fired. This action can be a simple message without attributes or any kind of action. In
the latter case, a pair of braces must be used to delimit the action to perform. With this
declaration:

curve C
action := {

group G {
print $y

2 action 1 $y
1 action 2 $y

}
}

{ ... }

at each sampling point the value of $y is immediately printed and two beats later action 1
will be fired and one additional beat later action 2 will be fired.

If the attribute @action is missing, the curve construct simply assign the variables specified
in its body. This can be useful in conjunction with an whenever statement or because the
variables appears elsewhere in some expression.

11Curve can be edited graphically using the Ascograph editor.

43

7.5.3 Step, Durations and Parameter Specifications

Here, the step and the duration between breakpoints is expressed in relative time. But they
can be also expressed in absolute time and arbitrarily mixed (e.g. the time step in second
and duration in beats, and there also is possible to mix duration in beats and in seconds).

Step, duration, as well as the parameters, can be arbitrary expressions. These expressions
are evaluated when the curve is fired.

The sampling rate can be as small as needed to achieve perceptual continuity. However,
in the MAX environment, one cannot go below 1ms.

7.5.4 Interpolation Methods

The specification of the interpolation between two breakpoint is optional. By default, a linear
interpolation is used. Antescofo offers a rich set of interpolation methods:

� : piecewise constant function

� : linear interpolation

� to be completed

Note that the interpolation can be different for each successive pair of breakpoints.

If one need an interpolation method not yet implemented, it is easy to program it. The
idea is to apply a user defined function to the value returned by a simple linear interpolation,
as follows:

@FUN_DEF @f($x) { ... }
...
curve C action := print @f($x), grain := 0.1
{

$x
{ { 0 } @linear

1s { 1 }
}

}

The curve C will interpolate function @f between 0 and 1 after its starts, during one second
and with a sampling rate of 0.1 beat.

7.5.5 Managing Multiple Curves Simultaneously

To make easier the simultaneous sampling of several curves, it is possible to define multiples
parameters together in the same clause:

44

curve C
{

$x , $y , $z
{

{ 0, 1, -1 } @linear
4 { 2, 1, 0 } @linear
4 { -1, 2, 1 }

}
}

time

$x, $y, $z
2
1

4

8

4

-1

0

Note that with the previous syntax it is not possible to define simultaneous curves with
breakpoint at different time. This is possible using multiple parameter clauses, as in:

curve C
{

$x
{

{ 0 } @constant
2 { 1 } @linear
3 { -1 }

}
$y
{

{ 1 } @linear
3 { 2 }

}
}

time

$x, $y
2
1

2

5

3
-1

0

3

In this example, the parameters $x and $y have not their breakpoints at the same time.
The first two breakpoints for $x defines a constant function. And the second and the last
breakpoints define a linear function. Incidentally note that the result is not a continuous
function on [0; 5]. The parameter $y is defined by only one pair of breakpoints. The last
breakpoint has its time coordinate equal to 3, which ends the function before the end of $x.
In this case, the last value of the function is used to extend the parameters “by continuity”.

7.6 Reacting to logical events: Whenever

The whenever statement allows the launching of actions conditionally on the occurrence of a
logical condition:

whenever (boolean_expression 1)
{

actions_list
} until (boolean_expression 2)

The behavior of this construction is the following: The whenever is active from its firing until
boolean_expression 2 evaluates to false.. After the firing of the whenever, each time the
variables of the boolean_expression 1 are updated, boolean_expression 1 is re-evaluated.
We stress the fact that only the variables that appear explicitly in the boolean condition are
tracked. If the condition evaluates to true, the body of the whenever is launched.

45

Note that the boolean condition is not evaluated when the whenever is fired: only when
one of the variables that appears in the Boolean expression is updated by an assignment
elsewhere.

Notice also the difference with a conditional action (section 7.2): a conditional action is
evaluated when the flow of control reaches the condition while the whenever is evaluated as
many time as needed, from its firing, to track the changes of the variables appearing in the
condition.

The whenever is a way to reduce and simplify the specification of the score particularly when
actions have to be executed each time some condition is satisfied. It also escapes the sequential
nature of traditional scores. Resulting actions of a whenever statement are not statically
associated to an event of the performer but dynamically satisfying some predicate, triggered
as a result of a complex calculation, launched by external events, or any combinations of the
above.

Because the action in the body of a whenever are not bound to an event or another action,
synchronization and error handling attributes are irrelevant for this compound action.

Nota Bene that multiple occurrence of the body of the same whenever may be active
simultaneously, as shown by the following example:

let $cpt := 0
0.5 loop 1 {

let $cpt := $cpt + 1
}
whenever ($cpt > 0) {

0.5 a 1
0.5 a 2
0.5 a 3

} until ($cpt <= 3)

This example will produce the following schedule:

a2 a1 a3
time

$cpt := 0 $cpt := 1 $cpt := 2 $cpt := 3 $cpt := 4

a2 a1 a3

a2 a1 a3

1st

2nd

3rd
firing of the whenever

7.6.1 Causal Score and Temporal Shortcuts

The actions triggered when the body of a whenever W ... is fired, may fire others whenever,
including directly or indirectly W itself. Here is an example:

let $x := 1
let $y := 1
whenever ($x > 0) @name W1
{

let $y := $y + 1
}

46

whenever ($y > 0) @name W2
{

let $x := $x + 1
}
let $x := 10 @name Start

When action Start is fired, the body of W1 is fired in turn in the same logical instant, which
leads to the firing of the body of W2 which triggers W1 again, etc. So we have an infinite loop
of computations that are supposed to take place in the same logical instant :

Start ! W1 ! W2 ! W1 ! W2 ! W1 ! W2 ! W1 ! W2 ! W1 ! : : :

This infinite loop is called a temporal shortcuts and correspond to a non causal score. The
previous score is non-causal because the variable $x depends instantaneously on the updates
of variable $y and variable $y depends instantaneously of the update of the variable $x.

The situation would have been much different if the assignments had been made after a
certain delay. For example:

let $x := 1
let $y := 1
whenever ($x > 0) @name W1
{

1 let $y := $y + 1
}
whenever ($y > 0) @name W2
{

1 let $x := $x + 1
}
let $x := 10 @name Start

also generate an infinite stream of computations but with a viable schedule in time. If Start
is fired at 0, then W1 is fired at the same date but the assignment of $y will occurs only at
date 2. At this date, the body of W2 is subsequently fired, which leads to the assignement of
$x at date 3, etc.

0: Start ! W1
! 1: $y := 1+1 ! W2
! 2: $x := 1+1 ! W1
! 3: $y := 2+1 ! W2
! 4: $x := 2+1 ! W1
! 5: ...

Automatic Temporal Shortcut Detection. Antescofo detects automatically the tem-
poral shortcuts and stops the infinite regression. No warning is issued although temporal
shortcuts are considered as bad programming.

47

8 Synchronization and Error Handling Strategies

The musician’s performance is subject to many variations from the score. There are several
ways to adapt to this musical indeterminacy based on specific musical context. The musical
context that determines the correct synchronization and error handling strategies is at the
composer or arranger’s discretion.

8.1 Synchronization Strategies

8.1.1 Loose Synchronization

By default, once a group is launched, the scheduling of its sequence of relatively-timed actions
follows the real-time changes of the tempo from the musician. This synchronization strategy
is qualified as loose.

Figure 6 attempts to illustrate this within a simple example: Figure 6(a) shows the ideal
performance or how actions and instrumental score is given to the system. In this example,
an accompaniment phrase is launched at the beginning of the first event from the human
performer. The accompaniment in this example is a simple group consisting of four actions
that are written parallel (and thus synchronous) to subsequent events of the performer in the
original score, as in Figure 6(a). In a regular score following setting (i.e., correct listening
module) the action group is launched synchronous to the onset of the first event. For the rest
of the actions however, the synchronization strategy depends on the dynamics of the perfor-
mance. This is demonstrated in Figures 6(b) and 6(c) where the performer hypothetically
accelerates or decelerate the consequent events in her score. In these two cases, the delays
between the actions will grows or decreases until converge to the performer tempo.

The loose synchronization strategy ensures a fluid evolution of the actions launching but
it does not guarantee a precise synchronization with the events played by the musician.
Although this fluid behavior is desired in certain musical configurations, there is an an al-
ternative synchronization strategy where the electronic actions will be launched as close as
possible to the events detection.

8.1.2 Tight Synchronization

If a group is tight, its actions will be dynamically analyzed to be triggered not only using
relative timing but also relative to the nearest event in the past. Here, the nearest event is
computed in the ideal timing of the score.

This feature evades the composer from segmenting the actions of a group to smaller seg-
ments with regards to synchronization points and provide a high-level vision during the
compositional phase. A dynamic scheduling approach is adopted to implement the tight
behavior. During the execution the system synchronize the next action to be launched with
the corresponding event.

Note that the arbitrary nesting of groups with arbitrary synchronization strategies do not
always make sense: a group tight nested in a group loose has no well defined triggering
event (because the start of each action in the loose group are supposed to be synchronized

48

0 1 2 3 4 5 6

1 2 1 2 1 2

group loose

action-loose 1 action-loose 2 action-loose 3 action-loose 4

group tight

action-tight 1 action-tight 2 action-tight 3 action-tight 4

7 8

1 Pulsations en
fonction du
tempo estimé

Temps absolu
(secondes)

Évènements
joués de la
partition du
musicien

= 1 seconde

0 1 2 3 4 5 6

1 2 1 2 1 2

group loose

action-loose 1 action-loose 2 action-loose 3 action-loose 4

group tight

action-tight 1 action-tight 2 action-tight 3 action-tight 4

7 8

1 Pulsations en
fonction du
tempo estimé

Temps absolu
(secondes)

Évènements
joués de la
partition du
musicien

= 1 seconde

0 1 2 3 4 5 6

1 2 1 2 1 2

group loose

action-loose 1 action-loose 2 action-loose 3 action-loose 4

group tight

action-tight 1 action-tight 2 action-tight 3 action-tight 4

7 8

1 Pulsations en
fonction du
tempo estimé

Temps absolu
(secondes)

Évènements
joués de la
partition du
musicien

= 1 seconde

0 1 2 3 4 5 6

1 2 1 2 1 2

group loose

action-loose 1 action-loose 2 action-loose 3 action-loose 4

group tight

action-tight 1 action-tight 2 action-tight 3 action-tight 4

7 8

1 Pulsations en
fonction du
tempo estimé

Temps absolu
(secondes)

Évènements
joués de la
partition du
musicien

= 1 seconde

Actions Group

delay

delay

Performer
events

Electronic
actionsa1 a2 a3 a4

(a) Ideal performance0 1 2 3 4 5 6

1 2 1 2 1 2

group loose

action-loose 1 action-loose 2 action-loose 3 action-loose 4

group tight

action-tight 1 action-tight 2 action-tight 3 action-tight 4

7 8

1 Pulsations en
fonction du
tempo estimé

Temps absolu
(secondes)

Évènements
joués de la
partition du
musicien

= 1 seconde

0 1 2 3 4 5 6

1 2 1 2 1 2

group loose

action-loose 1 action-loose 2 action-loose 3 action-loose 4

group tight

action-tight 1 action-tight 2 action-tight 3 action-tight 4

7 8

1 Pulsations en
fonction du
tempo estimé

Temps absolu
(secondes)

Évènements
joués de la
partition du
musicien

= 1 seconde

0 1 2 3 4 5 6

1 2 1 2 1 2

group loose

action-loose 1 action-loose 2 action-loose 3 action-loose 4

group tight

action-tight 1 action-tight 2 action-tight 3 action-tight 4

7 8

1 Pulsations en
fonction du
tempo estimé

Temps absolu
(secondes)

Évènements
joués de la
partition du
musicien

= 1 seconde

0 1 2 3 4 5 6

1 2 1 2 1 2

group loose

action-loose 1 action-loose 2 action-loose 3 action-loose 4

group tight

action-tight 1 action-tight 2 action-tight 3 action-tight 4

7 8

1 Pulsations en
fonction du
tempo estimé

Temps absolu
(secondes)

Évènements
joués de la
partition du
musicien

= 1 seconde

0 1 2 3 4 5 6

1 2 1 2 1 2

group loose

action-loose 1 action-loose 2 action-loose 3 action-loose 4

group tight

action-tight 1 action-tight 2 action-tight 3 action-tight 4

7 8

1 Pulsations en
fonction du
tempo estimé

Temps absolu
(secondes)

Évènements
joués de la
partition du
musicien

= 1 seconde

Actions Group

delay

Performer
events

Electronic
actions

delay’

delay’

a1 a2 a3 a4

(b) Faster performance (delay’ < delay)0 1 2 3 4 5 6

1 2 1 2 1 2

group loose

action-loose 1 action-loose 2 action-loose 3 action-loose 4

group tight

action-tight 1 action-tight 2 action-tight 3 action-tight 4

7 8

1 Pulsations en
fonction du
tempo estimé

Temps absolu
(secondes)

Évènements
joués de la
partition du
musicien

= 1 seconde

0 1 2 3 4 5 6

1 2 1 2 1 2

group loose

action-loose 1 action-loose 2 action-loose 3 action-loose 4

group tight

action-tight 1 action-tight 2 action-tight 3 action-tight 4

7 8

1 Pulsations en
fonction du
tempo estimé

Temps absolu
(secondes)

Évènements
joués de la
partition du
musicien

= 1 seconde

0 1 2 3 4 5 6

1 2 1 2 1 2

group loose

action-loose 1 action-loose 2 action-loose 3 action-loose 4

group tight

action-tight 1 action-tight 2 action-tight 3 action-tight 4

7 8

1 Pulsations en
fonction du
tempo estimé

Temps absolu
(secondes)

Évènements
joués de la
partition du
musicien

= 1 seconde

0 1 2 3 4 5 6

1 2 1 2 1 2

group loose

action-loose 1 action-loose 2 action-loose 3 action-loose 4

group tight

action-tight 1 action-tight 2 action-tight 3 action-tight 4

7 8

1 Pulsations en
fonction du
tempo estimé

Temps absolu
(secondes)

Évènements
joués de la
partition du
musicien

= 1 seconde

0 1 2 3 4 5 6

1 2 1 2 1 2

group loose

action-loose 1 action-loose 2 action-loose 3 action-loose 4

group tight

action-tight 1 action-tight 2 action-tight 3 action-tight 4

7 8

1 Pulsations en
fonction du
tempo estimé

Temps absolu
(secondes)

Évènements
joués de la
partition du
musicien

= 1 seconde

0 1 2 3 4 5 6

1 2 1 2 1 2

group loose

action-loose 1 action-loose 2 action-loose 3 action-loose 4

group tight

action-tight 1 action-tight 2 action-tight 3 action-tight 4

7 8

1 Pulsations en
fonction du
tempo estimé

Temps absolu
(secondes)

Évènements
joués de la
partition du
musicien

= 1 seconde

0 1 2 3 4 5 6

1 2 1 2 1 2

group loose

action-loose 1 action-loose 2 action-loose 3 action-loose 4

group tight

action-tight 1 action-tight 2 action-tight 3 action-tight 4

7 8

1 Pulsations en
fonction du
tempo estimé

Temps absolu
(secondes)

Évènements
joués de la
partition du
musicien

= 1 seconde

Actions Group

Performer
events

Electronic
actions

delay

delay”

delay”

a1 a2 a3 a4

(c) Slower performance (delay” > delay)

Figure 6: The effect of tempo-only synchronization for accompaniment phrases: illus-
tration for different tempi. In the score, the actions are written to occur simultaneously
with the notes, cf. fig. (a). Figure (b) and (c) illustrate the effect of a faster or a slower
performance. In these cases, the tempo inferred by the listening machine converges towards
the actual tempo of the musicians. Therefore, the delays, which are relative to the inferred
tempo, vary in absolute time to converge towards the delay between the notes observed in
the actual performance.

49

dynamically with the tempo). All other combinations are meaningful. To acknowledge that,
groups nested in a loose group, are loose even if it is not enforced by the syntax.

8.2 Missed Event Errors Strategies

Parts but not all of the errors during the performance are handled directly by the listening
modules (such as false-alarms and missed events by the performer). The critical safety of the
accompaniment part is reduced to handling of missed events (whether missed by the listen-
ing module or human performer). In some automatic accompaniment situations, one might
want to dismiss associated actions to a missed event if the scope of those actions does not
bypass that of the current event at stake. On the contrary, in many live electronic situations
such actions might be initializations for future actions to come. It is the responsability of
the composer to select the right behavior by attributing relevant scopes to accompaniment
phrases and to specify, using an attribute, the corresponding handling of missed events.

A group is said to be local if it should be dismissed in the absence of its triggering event
during live performance; and accordingly it is global if it should be launched in priority
and immediately if the system recognizes the absence of its triggering event during live
performance. Once again, the choice of a group being local or global is given to the discretion
of the composer or arranger.

Combining Synchronization and Error Handling. The combination of the synchro-
nization attributes (tight or loose) and error handling attributes (local or global) for a
group of accompaniment actions give rise to four distinct situations. Figure 7 attempts to
showcase these four situations for a simple hypothetical performance setup similar to Figure 6.

Each combination corresponds to a musical situation encountered in authoring of mixed
interactive pieces:

� local and loose: A block that is both local and loose correspond to a musical entity
with some sense of rhythmic independence with regards to synchrony to its counterpart
instrumental event, and strictly reactive to its triggering event onset (thus dismissed in
the absence of its triggering event).

� local and tight: Strict synchrony of inside actions whenever there’s a spatial corre-
spondence between events and actions in the score. However actions within the strict
vicinity of a missing event are dismissed. This case corresponds to an ideal concerto-like
accompaniment system.

� global and tight: Strict synchrony of corresponding actions and events while no actions
is to be dismissed in any circumstance. This situation corresponds to a strong musical
identity that is strictly tied to the performance events.

� global and loose: An important musical entity with no strict timing in regards to
synchrony. Such identity is similar to integral musical phrases that have strict starting
points with rubato type progressions (free endings).

50

0 1 2 3 4 5 6

1 2 1 2 1 2

group loose

action-loose 1 action-loose 2 action-loose 3 action-loose 4

group tight

action-tight 1 action-tight 2 action-tight 3 action-tight 4

7 8

1 Pulsations en
fonction du
tempo estimé

Temps absolu
(secondes)

Évènements
joués de la
partition du
musicien

= 1 seconde

0 1 2 3 4 5 6

1 2 1 2 1 2

group loose

action-loose 1 action-loose 2 action-loose 3 action-loose 4

group tight

action-tight 1 action-tight 2 action-tight 3 action-tight 4

7 8

1 Pulsations en
fonction du
tempo estimé

Temps absolu
(secondes)

Évènements
joués de la
partition du
musicien

= 1 seconde

0 1 2 3 4 5 6

1 2 1 2 1 2

group loose

action-loose 1 action-loose 2 action-loose 3 action-loose 4

group tight

action-tight 1 action-tight 2 action-tight 3 action-tight 4

7 8

1 Pulsations en
fonction du
tempo estimé

Temps absolu
(secondes)

Évènements
joués de la
partition du
musicien

= 1 seconde

0 1 2 3 4 5 6

1 2 1 2 1 2

group loose

action-loose 1 action-loose 2 action-loose 3 action-loose 4

group tight

action-tight 1 action-tight 2 action-tight 3 action-tight 4

7 8

1 Pulsations en
fonction du
tempo estimé

Temps absolu
(secondes)

Évènements
joués de la
partition du
musicien

= 1 seconde

Performer
events

Electronic
actions

e1 e2 e3 e4

Actions Group
local loose

Actions Group
local tight

Actions Group
global tight

Actions Group
global loose

a1 a2

a2

a2a1

a1 a2

a1

Figure 7: Accompaniment behavior in case of missed event for four synchronization and
error handling strategies. In this example, the score is assumed to demand for four distinct
performer events (e1 to e4) with grouped actions whose two actions are initially aligned on
e1 and e3. Figure 6 illustrates the system behavior in case e1 is missed but the rest detected
without tempo change during live performance for the four configurations discussed above.
Note that e1 is detected as missed (in real-time) once of course e2 is reported.

51

9 Process

Process are similar to functions: after its definition, a function @f can be called and computes
a value. After its definition, a process ::P can be called and generates actions that are run
as a group. This group is called the “instanciation of the process”. They can be several
instanciations of the same process that run in parallel.

Process can be defined using the @proc_def construct. For instance,

@proc_def ::trace($note , $d)
{

print begin $note
$d print end $note

}

The name of the process denotes a proc value, see 5.1.12, and it is used for calling the process.
A process call, is similar to a function call: arguments are between parenthesis:

NOTE C4 1.3
::trace("C4", 1.3)
action1

NOTE D3 0.5
::trace("D3", 0.5)

In the previous code we know that ::trace("C4", 1.3) is a process call because the name of
functions and the name of processes differs.

A process call is an atomic action (it takes no time and does not introduces a new scope
for variables). The result of the call is evaluated as a group. So the previous code fragment
behave similarly as:

NOTE C4 1.3
group {

print begin "C4"
1.3 print end "C4"

}
action1

NOTE D3 0.5
group {

print begin "D3"
0.5 print end "D3"

}

A process can also be called in an expression and the instanciation mechanism is similar:
a group is started and run in parallel. However, an exec value, is returned as the result of
the process call, see section 5.1.13. This value refers to the group lauched by the process
instanciation and is eventually used in the computation of the surrounding expression.

9.1 Macro vs. Processus

From the point of view of the process instanciation, a process call can be seen as a kind of
macro expansion (see section 10). However, contrary to macros:

52

� the expression that are arguments of a call are computed only once at call time, and
call time is when the application is fired (not when the file is read);

� the actions that are launched consequently to the firing of a process application are
computed when the process is applied,

� process can be recursive;

� process are higher-order values: a process ::P can be used as the value of the argument
of a function or a process call. This enable the parameterization of process, an expressive
and powerful construction to describe complex compositional schemes.

Let give some examples of higher order recursive processes.

9.2 Recursive Process

A infinite loop

Loop L 10
{

... actioni ...
}

is equivalent to a call of the recursive process ::L defined by:

@proc_def ::L()
{

Group repet {
10 ::L()

}
... actioni ...

}

The group repet is used to launch recursively the process without disturbing the timing of
the actions in the loop body. In this example, the process has no parameters.

9.3 Process as Values

A process can be the argument of another process. For example:

@Proc_def ::Tic($x) {
$x print TIC

}
@proc_def ::Toc($x) {

$x print TOC
}
@proc_def ::Clock($p, $q) {

:: $p(1)
:: $q(2)
3 :: Clock($q, $p)

}

53

A call to Clock(::Tic, ::Toc) will print TIC one beat after the call, then TOC two beats latter,
and then TIC again at date 4, TOC at date 6, etc.

In the previous code a :: is used in the first two lines of the ::Clock process to tell
Antescofo that the value of arguments $p and $q must be processes and that this is a process
call and not a function call. This indication is mandatory because in this case, there is no
way to know for sure that $p(1) is a function call or a process call.

54

10 Macros

Macro can be defined using the @macro_def construct. The macro-expansion is a syntactic
replacement that occurs during the parsing but before any evaluation. The body of a macro
can call (other) macros. When a syntax error occurs in the expansion of a macro, the location
given refers to the text of the macro and is completed by the location of the macro-call site
(which can be a file or the site of another macro-expansion).

10.1 Macro Definitions

Macro name are @-identifier. For compatibility reason, a simple identifier can be used but the
@-form must be used to call it.

@macro_def @f($a, $x , $b) { $a * $x + $b }

Macro parameter names are $-identifiers: The body of the macro is between braces. The white
spaces and tabulation and carriage-returns immediately after the open brace and immediately
before the closing brace are not part of the macro body.

Notice that in a macro-call, the white-spaces and carriage-returns surrounding an argument
are removed. But “inside” the argument, one can use it:

@macro_def @delay_five($x)
{

5 group {
$x

}
}
@delay_five(

1 print One
2 print Two

)

is expanded as:

5 group {
1 print One
2 print Two

}

Macro have been extended to accept zero argument:

@macro_def @PI { 3.1415926535 }
let $x := @sin($t * @PI)

10.2 Expansion Sequence

The body of a macro @m can contain calls to others macro, but they will be expanded the
expansion of @m.

The arguments of a macro may contain calls to other macros, but beware that their ex-
pansion take place only after the expansion of the top-level call. So one can write:

55

@macro_def apply1($f,$arg) { $f($arg) }
@macro_def concat($x, $y) { xy }
let $x := @apply1(@sin , @PI)
print @concat(@concat (12, 34), @concat (56, 78))

which results in

let $x := @sin (3.1415926535)
print 1234 5678

The expression @sin(3.1415926535) results from the expansion of @sin(@PI) while 1234 5678
results from the expansion of @concat(12, 34)@concat(56, 78). In the later case, we don’t
have 12345678 because after the expansion the first of the two remaining macro calls, we have
the text 1234@concat(56, 78) which is analyzed as a number followed by a macro call, hence
two distinct tokens.

10.3 Generating New Names

The use of macro often requires the generation of new name. Consider using local variables
(see below) that can be introduced in groups. Local variables enable the reuse of identifier
names, as in modern programming languages.

Local variable are not always a solution. They are two special macro constructs that can
be used to generates fresh identifiers:

@UID(id)

is substituted by a unique identifier of the form idxxx where xxx is a fresh number (unique
at each invocation). id can be a simple identifier, a $-identifier or an @-identifier. The token

@LID(id)

is replaced by the idxxx where xxx is the number generated by the last call to @UID. For
instance

LFWD 2 @name = @UID(loop)
{

let @LID($var) := 0
...
superVP speed @LID($var) @name = @LID(action)

}
...
kill @LID(action) of @LID(loop)
...
kill @LID(loop)

is expanded in (the number 33 used here is for the sake of the example):

LFWD 2 @name = loop33
{

let $var33 := 0
...
superVP speed $var33 @name = action33

56

}
...
kill action33 of loop33
...
kill loop33

The special constructs @UID and @LID can be used everywhere (even outside a macro body).

If the previous constructions are not enough, they are some tricks that can be used to
concatenate text. For example, consider the following macro definition:

@macro_def @Gen($x, $d , $actions)
{

GFWD @name = Gengroup$x
{

$d $action
$d $action

}
}

Note that the character $ cannot be part of a simple identifier. So the text Gengroup$x
is analyzed as a simple identifier immediately followed by a $-identifier. During macro-
expansion, the text Gengroup$x will be replaced by a token obtained by concatenating the
actual value of the parameter $x to Gengroup. For instance

@Gen(one , 5, print Ok)

will expand into

GFWD @name = Gengroupone
{

5 print Ok
5 print Ok

}

Comments are removed during the macro-expansion, so you can use comment to concatenate
thing after an argument, as for the C preprocessor:

@macro_def @adsuffix($x) { $x/**/ suffix }
@macro_def concat($x, $y) { xy }

With these definition,

@addsuffix($yyy)
@concat(3.1415 , 9265)

is replaced by

$yyysuffix
3.14159265

57

11 Antescofo Workflow

11.1 Editing the Score

� From score editor (Finale, Notability, Sibelius) to Antescofo score.

� Conversion using Ascograph.

� Direct editing using Ascograph.

� Latex printing of the score using the package lstlisting

� Syntax coloring for TextWrangler and emacs :-)

11.2 Tuning the Antescofo Listening Machine

11.3 Debuging an Antescofo Score

11.4 Dealing with Errors

Errors, either during parsing or during the execution of the Antescofo score, are signaled on
the MAX console.

The reporting of syntax errors includes a localization. This is generally a line and column
number in a file. If the error is raised during the expansion of a macro, the file given is the
name of the macro and the line and column refers to the begining of the macro definition.
Then the location of the call site of the macro is given.

See the paragraph 11.8 for additional information on the old syntax.

11.4.1 Monotoring with Notability

11.4.2 Monotoring with Ascograph

11.4.3 Tracing an Antescofo Score

They are several alternative features that make possible to trace a running Antescofo pro-
gram.

Printing the Parsed File. Using Ascograph, one has a visual representation of the parsed
Antescofo score along with the textual representation.

The result of the parsing of an Antescofo file can be visualized using the printfwd internal
command. This command opens a text editor.

Verbosity. The verbosity can be adjusted to trace the events and the action. A verbosity
of n includes all the messages triggered for a verbosity m < n. A verbosity of:

� 1 prints the parsed files on the shell console, if any.

58

� 3 trace the parsing on the shell console. Beware that usually MAX is not launched
from a shell console and the result, invisible, slowdown dramatically the parsing. At this
level, all events and actions are traced on the MAX console when they are recognized
of launched.

� 4 traces also all audio internals.

The TRACE Outlet. If an outlet named TRACE is present, the trace of all event and action
are send on this outlet. The format of the trace is

EVENT label ...
ACTION label ...

Tracing the Updates of a Variable. If one want to trace the updates of a variable $v, it
is enough to add a corresponding whenever at the begining of the scope that defines $v:

whenever ($v = $v)
{

print Update "$v:␣" $v
}

The condition may seems curious but is needed to avoid the case where the value of $v if
interpreted as false (which will prohibit the triggering of the whenever body).

11.5 Interacting with MAX

When embedded in MAX, the Antescofo systems appears as an antescofo˜ object that can
be used in a patch. This object presents a fixed interface through its inlets and outlets.

11.5.1 Inlets

The main inlet is dedicated to the audio input. Antescofo’s default observation mode is
“audio” and based on pitch and can handle multiple pitch scores (and audio). But it is also
capable of handling other inputs, such as control messages and user-defined audio features. To
tell Antescofo what to follow, you need to define the type of input during object instantiation,
after the @inlets operator. The following hardcoded input types are recognized:

� KL is the (default) audio observation module based on (multiple) pitch.

� HZ refers to raw pitch input as control messages in the inlet (e.g. using fiddleõr yinõb-
jects).

� MIDI denotes to midi inputs.

You can also define your own inlets: by putting any other name after the ’@inlets’ operator
you are telling Antescofo that this inlet is accepting a LIST. By naming this inlet later in
your score you can assign Antescofo to use the right inlet, using the @inlet to switch the
input stream.

59

11.5.2 Outlets

By default, they are three Antescofo’s outlets:

� Main outlet (for note index and messages),

� tempo (BPM / Float),

� score label (symbol) plus an additional BANG sent each time a new score is loaded.

Main outlet tempo score label Additional (predefined) outlet can be activated by naming
them after the @outlets operator. The following codenames are recognized

� ANTEIOI Anticipated IOI duration in ms and in runtime relative to detected tempo

� BEATNUM Cumulative score position in beats

� CERTAINTY Antescofo’s live certainty during detections [0; 1]

� ENDBANG Bang when the last (non-silence) event in the score is detected

� MIDIOUT

� MISSED

� NOTENUM MIDI pitch number or sequenced list for trills/chords

� SCORETEMPO Current tempo in the original score (BPM)

� TDIST

� TRACE <

� VELOCITY

ANTEIOI ANTEIOI ANTEIOI BEATNUM CERTAINTY ENDBANG MIDIOUT MISSED NOTENUM SCORETEMPO TDIST
TRACE VELOCITY

11.5.3 Predefined Messages

The Antescofo object accepts predefined message sent to antescofo-mess1. These messages
corresponds to the internal commands described in section 6.6.

11.6 Interacting with PureData

11.7 Antescofo Standalone Offline

A standalone offline version of Antescofo is available. By “standalone” we mean that An-
tescofo is not embedded in Max or PD. It appears as an executable (command line). By
“offline” we means that this version does not accept a real-time audio input but an audio
file. The time is then managed virtually and goes as fast as possible. This standalone offline
version is the machine used for the “simulation” feature in Ascograph.

The help of the command line is given in Fig. 8.

60

Usage : antescofo [options...] [scorefile]
Syntax of options: --name or --name value or --name=value
Some options admit a short form (-x) in addition to a long form (--uvw)

Offline execution Modes:
--full : This is the default mode where an Antescofo score file is

aligned against an audio file and the actions are triggered.
A score file (--score) and an audio file (--audio) are both needed.

--play : Play mode where the audio events are simulated from the
score specification (no audio recognition) (-p).
A score file (--score) is needed.

--recognition : Audio recognition-only mode (no action is triggered) (-r)
An audio file is needed.

Inputs/Output files:
--score filename : input score file (-s)

alternatively, it can be specified as the last argument of the command line
--audio filename : input audio file (-a)
--output filename : output file for the results in recognition mode (default standard output) (-o)
--lab : output format in ecognition mode (default, alternative --mirex)
--mirex : output format in ecognition mode (alternative --lab)
--trace filename : trace all events and actions (use ’stdout’ for standard output) (-t)

Listening module options:
--fftlen samples : fft window length (default 2048) (-F)
--hopsize samples : antescofo resolution in samples (default: 512) (-S)
--gamma float : Energy coefficient (default: -2.0) (-G)
--pedal (0|1) : pedal on=1/off=0 (default: 0)
--pedaltime float : pedaltime in milliseconds (default: 600.0) (-P)
--nofharm n : number of harmonics used for recognition (default: 10) (-H)

Reactive module options:
--message filename : write messages in filename (use ’stdout’ for standard output) (-m)
--strict : program abort when an error is encountered

Others options
--verbosity level : verbosity (default 0) (-v)
--version : current version (-V)
--help : print this help (-h)

Figure 8: Help of the standalone offline command line.

61

11.8 Old Syntax

The old syntax for several constructs is still recognized but is deprecated. Composers are
urged to use the new one.

KILL delay name
KILL delay name OF name
GFWD delay name attributes { ... }
LFWD delay name period attributes { ... }
CFWD delay name step attributes { ... }

where:

� KILL and KILL OF correspond to abort and abort of. The specification of delay and
attributes are optional, name is mandatory.

� GFWD corresponds to group. The specification of delay and attributes are optional,
name is mandatory.

� LFWD corresponds to loop. The argument period is mandatory and correspond to the
period of the loop.

� CFWD corresponds to curve. The parameter step is the step used in the sampling of the
curve.

62

12 Stay Tuned

Antescofo is in constant improvement and evolution. Several directions are envisioned; to
name a few:

� temporal regular expressions,

� modularization of the listening machine,

� multimedia listening,

� graphical editor and real-time control board,

� standalone version,

� richer set of values and libraries,

� static analysis and verification of scores,

� multi-target following,

� extensible error handling strategies,

� extensible synchronization strategies,

� parallel following,

� distributed coordination,

� tight coupling with audio computation.

Your feedback is important for us. Please, send your comments, questions, bug reports, use
cases, hints, tips & wishes using the Ircam Forum Antescofo discussion group at

http://forumnet.ircam.fr/discussion-group/antescofo/?lang=en

63

http://forumnet.ircam.fr/discussion-group/antescofo/?lang=en

64

A Changes in 0.51

With respect to the previous official release:

� the listening machine has been improved in many ways;

� new syntax for groups and loops;

� delays and tempi can be defined by an expression;

� expressions have been extended with conditionals, global and local variables, histories,
recursive functions, etc.;

� the types of values managed by Antescofo has been greatly extended to include:
boolean, integer, float, string, symbol, function, process, vector, dictionary (map) and
interpolated function;

� extended and new atomic actions (assert, abort, erase of an action in a group, process
call, assignment);

� new compound actions have been introduced:

– curve,

– whenever,

– conditionals,

– processes,

– parallel iterations;

� the new synchronization strategies (loose and tight) and the new error handling strate-
gies (local or global) can be used uniformly on each compound actions;

� improved error messages including the location in the score file;

� management of OSC communications;

� output to a file;

� trace, communication with Notability, integration with Ascograph;

� internalization of Max or PD messages as Antescofo atomic actions;

� standalone (offline) and 64 bit version (Mac, Linux).

65

B Detailed Table of Contents

How to use this document 3

Brief history of Antescofo 3

1 Understanding Antescofo scores 4

1.1 Structure of an Antescofo Score . 4

1.2 Elements of an Antescofo Score . 5

Function Definition. 6

Process Definition. 6

Macro Definition. 7

Function, Process and Macro Application. 7

1.3 Identifiers . 7

1.3.1 Simple Identifiers . 7

1.3.2 @-identifiers . 8

1.3.3 $-identifiers . 8

1.3.4 ::-identifiers . 8

1.4 Comments and Indentation . 8

2 Events 10

2.1 Event Specification . 10

2.2 Event Parameters . 10

2.3 Events as Containers . 11

2.4 Event Attributes . 12

3 Antescofo Model of Time 13

3.1 Logical Instant . 13

3.2 Time Frame . 14

4 Actions in Brief 16

Action Attributes. 16

4.1 Delays . 16

Zero Delay. 16

Absolute and Relative Delay. 17

Evaluation of a Delay. 17

Synchronization Strategies. 17

4.2 Label . 17

5 Expressions 19

5.1 Values . 19

5.1.1 Value Comparison . 19

5.1.2 Testing a Value . 20

66

5.1.3 Undefined Value . 20

5.1.4 Boolean Value . 20

5.1.5 Integer Value . 20

5.1.6 Float Value . 20

5.1.7 String Value . 21

5.1.8 Intentional Functions . 21

5.1.9 Map Value . 21

Extensional and Intentional Functions. 22

Domain, Range and Predicates. 22

Constructing Maps. 22

Extension of Arithmetic Operators. 23

Maps as Lists and Vectors. 23

Maps transformations. 23

Score reflected in a Map. 24

History reflected in a map. 24

5.1.10 InterpolatedMap Value . 25

5.1.11 Tab Value . 25

Tab function . 25

5.1.12 Proc Value . 25

5.1.13 Exec Value . 25

5.2 Variables . 25

5.2.1 Historicized Variables . 26

History reflected in a map. 26

5.2.2 Variables Declaration . 27

Local Variables. 27

History Length of a Variable. 27

Lifetime of a Variable. 28

5.2.3 System Variables . 28

5.2.4 Variables and Notifications . 28

Temporal Shortcuts. 29

5.2.5 Dates functions . 29

5.3 Operators and Predefined Functions . 29

Conditionnal Expression. 29

@size. 29

5.4 Auto-Delimited Expressions in Actions . 30

6 Atomic Actions 31

6.1 Assignments . 31

6.2 Aborting and Cancelling an Action . 32

6.2.1 Abort of an Action . 32

Abort and the hierarchical structure of compound actions. 32

6.2.2 Cancelling an Action . 33

67

6.3 Max Messages . 33

6.4 OSC Messages . 34

6.4.1 OSCSEND . 34

6.4.2 OSCRECV . 35

6.4.3 OSCON and OSCOFF . 36

6.5 I/O in a File . 36

6.6 Internal Commands . 36

6.7 Assertion assert . 38

7 Compound Actions 39

7.1 Group . 39

7.1.1 Local Tempo. 39

7.1.2 Attributes of Group and Compound Actions . 39

7.1.3 Instances of a Group . 40

7.1.4 Aborting a group . 40

The until Clause. 40

The during Clause. 40

7.2 Conditional Actions: If . 40

7.3 Sequential iterations: Loop . 41

Stopping a Loop. 41

7.4 Parallel Iterations: ParFor . 42

7.5 Sampling parameters: Curve . 42

7.5.1 A Simple Curve . 43

7.5.2 Actions Fired by a Curve . 43

7.5.3 Step, Durations and Parameter Specifications . 44

7.5.4 Interpolation Methods . 44

7.5.5 Managing Multiple Curves Simultaneously . 44

7.6 Reacting to logical events: Whenever . 45

7.6.1 Causal Score and Temporal Shortcuts . 46

Automatic Temporal Shortcut Detection. 47

8 Synchronization and Error Handling Strategies 48

8.1 Synchronization Strategies . 48

8.1.1 Loose Synchronization . 48

8.1.2 Tight Synchronization . 48

8.2 Missed Event Errors Strategies . 50

Combining Synchronization and Error Handling. 50

9 Process 52

9.1 Macro vs. Processus . 52

9.2 Recursive Process . 53

9.3 Process as Values . 53

10 Macros 55

68

10.1 Macro Definitions . 55

10.2 Expansion Sequence . 55

10.3 Generating New Names . 56

11 Antescofo Workflow 58

11.1 Editing the Score . 58

11.2 Tuning the Antescofo Listening Machine . 58

11.3 Debuging an Antescofo Score . 58

11.4 Dealing with Errors . 58

11.4.1 Monotoring with Notability . 58

11.4.2 Monotoring with Ascograph . 58

11.4.3 Tracing an Antescofo Score . 58

Printing the Parsed File. 58

Verbosity. 58

The TRACE Outlet. 59

Tracing the Updates of a Variable. 59

11.5 Interacting with MAX . 59

11.5.1 Inlets . 59

11.5.2 Outlets . 60

11.5.3 Predefined Messages . 60

11.6 Interacting with PureData . 60

11.7 Antescofo Standalone Offline . 60

11.8 Old Syntax . 62

12 Stay Tuned 63

A Changes in 0.51 65

B Detailed Table of Contents 66

69

	How to use this document
	Brief history of Antescofo
	Understanding Antescofo scores
	Structure of an Antescofo Score
	Elements of an Antescofo Score
	Identifiers
	Comments and Indentation

	Events
	Event Specification
	Event Parameters
	Events as Containers
	Event Attributes

	Antescofo Model of Time
	Logical Instant
	Time Frame

	Actions in Brief
	Delays
	Label

	Expressions
	Values
	Variables
	Operators and Predefined Functions
	Auto-Delimited Expressions in Actions

	Atomic Actions
	Assignments
	Aborting and Cancelling an Action
	Max Messages
	OSC Messages
	I/O in a File
	Internal Commands
	Assertion ;assert;

	Compound Actions
	;Group;
	Conditional Actions: ;If;
	Sequential iterations: ;Loop;
	Parallel Iterations: ;ParFor;
	Sampling parameters: ;Curve;
	Reacting to logical events: ;Whenever;

	Synchronization and Error Handling Strategies
	Synchronization Strategies
	Missed Event Errors Strategies

	Process
	Macro vs. Processus
	Recursive Process
	Process as Values

	Macros
	Macro Definitions
	Expansion Sequence
	Generating New Names

	Antescofo Workflow
	Editing the Score
	Tuning the Antescofo Listening Machine
	Debuging an Antescofo Score
	Dealing with Errors
	Interacting with MAX
	Interacting with PureData
	Antescofo Standalone Offline
	Old Syntax

	Stay Tuned
	Changes in 0.51
	Detailed Table of Contents

